Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Electronic Supplementary Information Oxygen Reduction Reaction Mechanism on Phosporus-doped Pyrolyzed Graphitic Fe/N/C Catalyst

Hermawan K. Dipojono^{1,2}, Adhitya Gandaryus Saputro^{1,2}, Apresio K. Fajrial³, Mohammad Kemal Agusta^{1,2}, Fiki T. Akbar⁴, Febdian Rusydi^{5,6}, and Dedy H.B. Wicaksono⁷

¹Advanced Functional Materials Research Group, Institut Teknologi Bandung, Jl.Ganesha 10, Bandung 40132, Indonesia

²Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia

³Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA

⁴Theoretical High Energy Physics and Instrumentations Research Group, Institut Teknologi Bandung, Jl.Ganesha 10, Bandung 40132, Indonesia

⁵ Theoretical Physics Research Group, Department of Physics, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia

⁶Research Center for Quantum Engineering Design, Airlangga University, Surabaya 60115, Indonesia

⁷Department of Biomedical Engineering, Faculty of Life Sciences and Technology, Swiss German University, Tangerang 15143, Indonesia

1 Relative energy of several possible FeN_4G -PN structures

Figure S1: Several FeN₄G-PN configurations. Value below the figure is energy of the structure relative to (a)

O_2 adsorption configurations on several active sites

Figure S2: O_2 adsorption configurations on C-N site of FeN₄G-NP (a), C-N site of FeN₄G-NP=O (b), FeN₄ site of undoped FeN₄G (c) and C-N site of GN₃PO (d).

3 Electronic properties of O_2 interaction with FeN₄G-PN systems

Figure S3: The localized p_z state on the P_{subs} site located right below the fermi level.

Figure S4: Local density of states (LDOS) of the interaction between localized p_z state of the P_{subs} site and $2\pi^*$ orbital of O_2 molecule in the O_2 end-on adsorption on the Fe₄ site of FeN₄G-NP system (a). The schematic of this interaction is shown in (b). This bonding is formed in addition to the usual interaction between d_{xz} state of the Fe atom and $2\pi^*$ orbital of O_2 molecule. The O_2 adsorption configuration is shown in (c).

Figure S5: Local density of states (LDOS) of the interaction between localized p_z state of the P_{subs} site with 2σ and 2π orbitals of O₂ molecule in the O₂ side-on adsorption on the P_{subs} site of FeN₄G-NP system (a). The schematic of this interaction is shown in (b). The O₂ adsorption configuration is shown in (c).

Figure S6: Local density of states (LDOS) of the interaction between localized p_z state of the P_{subs} site with p_z orbital of O atom in the FeN₄G-NP=O system (a). The schematic of this interaction is shown in (b). The FeN₄G-NP=O configuration is shown in (c).

Figure S7: Local density of states (LDOS) of the d-states of FeN₄G-NP=O and undoped FeN₄G.

4 ORR profiles for associative and dissociate mechanism at U = 1.23 V

Figure S8: ORR energy profiles at U = 1.23 V for associative mechanism on the FeN₄ site of FeN₄G-NP=O system compared to that of undoped FeN₄G system.

Figure S9: ORR energy profiles at U = 1.23 V for dissociative mechanism on the FeN₄ site of FeN₄G-NP=O system compared to that of undoped FeN₄G system.

5 Additional figures

Figure S10: 2OH adsorption configurations on the FeN₄ site of FeN₄G-NP=O system (a) and undoped FeN₄G system (b).

Figure S11: Initial state (IS), transition state (TS) and final state (FS) configurations of O_2 dissociation on the FeN₄ site of FeN₄G-NP=O (a) and undoped FeN₄G systems (b).

Figure S12: OH adsorption configurations on the C site of FeN₄G-NP=O system (a) and undoped FeN₄G system (b).

6 Adsorption energies of ORR related molecules

Table S1: Adsorption energies of HO_2 , OH and H_2O on various active sites configurations.

Configuration	Active site	$\begin{array}{c} E_{ads} \ HO_2 \\ (eV) \end{array}$	$E_{ads} OH$ (eV)	$\begin{array}{c} E_{ads} \ H_2O \\ (eV) \end{array}$
FeN ₄ G-NP=O	FeN_4 C-N	-2.33	-1.45 -0.18	-0.77 -0.76
FeN ₄ G	FeN_4	-2.32	-1.50	-0.37
G-N ₃ PO	C-N	-1.44	-1.14	-0.49