Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

New J Chem

Electronic supplementary information (ESI)

Synthesis and anticancer cytotoxicity with structural context of an α -hydroxyphosphonate based compound library derived from substituted benzaldehydes

Zita Rádai¹, Tímea Windt², Veronika Nagy², András Füredi^{2, 3}, Nóra Zsuzsa Kiss¹, Ivan Ranđelović^{4,5}, József Tóvári^{4,5} György Keglevich¹, Gergely Szakács^{2, 3} Szilárd Tóth²

¹Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Budapest, Hungary

²Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary

e-mail: toth.szilard.enzim@ttk.mta.hu; szakacs.gergely@ttk.mta.hu

³Institute of Cancer Research, Medical University Vienna, Vienna, Austria

⁴National Institute of Oncology, Department of Experimental Pharmacology, Budapest, Hungary

⁵Kineto Lab ltd., Budapest, Hungary

Table S1 (A). Comparison of δ_P and MS value of the analogues 1, 2 and 3 that were synthesized and published earlier.

Compound	δ_{P}	δ_P lit.	MS
1a	23.8	24.3 ¹	$[M + H]^+ = 217.1$
1b	23.4	_	$[M + H]^+ = 251.0$
1c	23.0	_	$[M + H]^+ = 251.0$
1d	23.2	22.1^{2}	$[M + H]^+ = 251.0$
1e	22.3	22.2^{3}	$[M + H]^+ = 262.0$
1f	22.3	21.8 ⁴	$[M + H]^+ = 262.0$
1g	20.7	23.6 ⁵	$[M + H]^+ = 231.1$
1h	24.1	23.8 ⁴	$[M + H]^+ = 231.1$
1i	24.5	24.9 ⁶	$[M + H]^+ = 247.1$
1j	23.8	-	$[M + H]^+ = 247.1$
<u>11</u>	23.3	26.0 ⁷	$[M + H]^+ = 235.1$
2a	21.7	19.4 ⁸	$[M + H]^+ = 245.1$
2b	21.2	18.8 ⁹	$[M + H]^+ = 279.1$
2c	20.8	-	$[M + H]^+ = 279.1$
2d	21.0	18.7 ⁸	$[M + H]^+ = 279.0$
2e	20.1	19.3 ⁹	$[M + H]^+ = 290.1$
2f	20.0	18.4 ⁷	$[M + H]^+ = 290.1$
3 a	22.1	22.4 10	$[M + H]^+ = 369.1256$
3b	21.9	21.9 11	$[M + H]^+ = 403.0869$
3c	22.3	22.3 11	$[M + H]^+ = 403.0881$
3d	21.7	22.4^{-10}	$[M + H]^+ = 403.0869$
3e	21.1	21.1 11	$[M + H]^+ = 414.1114$
3f	20.8	20.6 10	$[M + H]^+ = 414.1105$
3g	22.3	22.3 11	$[M + H]^+ = 383.1409$
3h	22.4	22.4 10	$[M + H]^+ = 383.1392$
3i	22.9	22.9 ¹⁰	$[M + H]^+ = 399.1378$

Compound	δ_{P}	$\delta_{\rm P}$ lit.	MS
4 a	26.2	26.0 ⁷	$[M + H]^+ = 231.1$
4f	24.8	_	$[M + H]^+ = 276.1$
4 k	25.4	25.6 ¹²	$[M + H]^+ = 249.1$
41	25.9	26.0 ⁷	$[M + H]^+ = 249.1$
4 m	25.5	26.3 ¹²	$[M + H]^+ = 309.0$
4n	25.5	25.3 ³	$[M + H]^+ = 309.0$
5f	22.5	-	$[M + H]^+ = 304.1$
6a	19.4	21.0 13	$[2M + H]^+ = 377.0545$
6b	18.5	16.3 ¹⁴	-
6c	18.2	20.1 14	-
6d	18.6	18.9 ¹⁴	$[2M - H]^{-} = 442.9659$
6g	19.8	19.8 ¹¹	-
6h	18.8	18.8 11	$[2M - H]^{-} = 403.0751$
6i	20.2	20.2 11	$[2M - H]^{-} = 435.0632$
60	18.4	18.4 11	_
7a	19.6, 35.0	19.6, 35.0 ¹⁵	$[M + H]^+ = 417.10146$
7d	19.2, 35.3	19.2, 35.3 ¹⁵	$[M + H]^+ = 451.06232$
7f	18.3, 36.1	18.3, 36.1 ¹⁵	$[M + H]^+ = 462.08590$
7h	19.8, 34.9	19.8, 34.9 ¹⁵	$[M + H]^+ = 431.11669$
8a	19.5 & 19.6, 78.6 &78.7	19.5 & 19.6, 78.6 &78.7 ¹⁵	$[M + H]^+ = 331.08555$
8d	16.8 & 16.9, 76.9 & 77.0	16.8 & 16.9, 76.9 & 77.0 ¹⁵	$[M + H]^+ = 365.04651$
8f	18.39 & 18.43, 80.3 & 80.4	18.39 & 18.43, 80.3 & 80.4 ¹⁵	$[M + H]^+ = 376.07061$
<u>8h</u>	19.9 & 20.1, 78.7 & 78.8	19.9 & 20.1, 78.7 & 78.8 ¹⁵	$[M + H]^+ = 345.10145$
9a	19.9, 72.7	19.9, 72.7 ¹⁵	$[M + H]^+ = 345.10125$
9d	21.5, 75.3	21.5, 75.3 ¹⁵	$[M + H]^+ = 379.06235$
9f	16.1, 72.1	16.1, 72.1 ¹⁵	$[M + H]^+ = 390.08662$
9h	20.1, 72.5	20.1, 72.5 15	$[M + H]^+ = 359.11697$

Table S1 (B). Comparison of δ_P and MS value of the analogues 4, 5, 6, 7, 8 and 9 that were synthesized and published earlier.

References

- 1. B. J. Rowe and C. D. Spilling, *Tetrahedron: Asymmetry*, 2001, **12**, 1701-1708.
- 2. G. Keglevich, V. Róza Tóth and L. Drahos, 2011, **22**, 15-17.
- 3. H. R. Hudson, R. O. Yusuf and R. W. Matthews, *Phosphorus, Sulfur, and Silicon and the Related Elements*, 2008, **183**, 1527-1540.
- 4. S. R. Davies, M. C. Mitchell, C. P. Cain, P. G. Devitt, R. J. Taylor and T. P. Kee, *Journal of Organometallic Chemistry*, 1998, **550**, 29-57.
- 5. Q. Li, C.-J. Hou, Y.-J. Liu, R.-F. Yang and X.-P. Hu, *Tetrahedron: Asymmetry*, 2015, **26**, 617-622.
- 6. G. Consiglio, S. Failla and P. Finocchiaro, *Phosphorus, Sulfur, and Silicon and the Related Elements*, 1996, **117**, 37-54.
- 7. O. Seven, S. Polat-Cakir, M. S. Hossain, M. Emrullahoglu and A. S. Demir, *Tetrahedron*, 2011, **67**, 3464-3469.
- 8. A. R. Sardarian and B. Kaboudin, *Synthetic Communications*, 1997, **27**, 543-551.
- 9. R. M. N. Kalla, Y. Zhang and I. Kim, *New Journal of Chemistry*, 2017, **41**, 5373-5379.
- 10. V. D. Pawar, S. Bettigeri, S. S. Weng, J. Q. Kao and C. T. Chen, *J Am Chem Soc*, 2006, **128**, 6308-6309.
- 11. Z. Rádai, P. Szeles, N. Z. Kiss, L. Hegedűs, T. Windt, V. Nagy and G. Keglevich, *Heteroatom Chemistry*, 2018, **29**, e21436.
- 12. C. Wang, J. Zhou, X. Lv, J. Wen and H. He, *Phosphorus, Sulfur, and Silicon and the Related Elements*, 2013, **188**, 1334-1339.
- 13. N. S. Tulsi, A. M. Downey and C. W. Cairo, *Bioorg Med Chem*, 2010, **18**, 8679-8686.
- 14. G. Forlani, A. Occhipinti, L. Berlicki, G. Dziedziola, A. Wieczorek and P. Kafarski, *J Agric Food Chem*, 2008, **56**, 3193-3199.
- 15. Z. Rádai, V. Hodula, N. Z. Kiss, J. Kóti and G. Keglevich, *Mendeleev Commun*, 2019, **29**, 153-154.

	GI at 20 µM		GI at 200 μM	
	Mes-Sa mCh	Mes-Sa/Dx5 mCh	Mes-Sa mCh	Mes-Sa/Dx5 mCh
1 a	1	-3	-3	9
1b	-4	-7	-1	0
1c	-5	-13	5	8
1d	-9	14	2	10
1e	-1	-13	3	11
1f	-2	13	-3	10
1g	-4	7	7	8
1h	-9	-8	8	-2
1i	-39	-5	8	6
1j	-6	7	12	9
11	-7	-7	11	3
2 a	-30	-11	1	-4
2b	-16	-15	8	13
2c	-3	2	-5	14
2d	-16	-8	14	7
2e	-16	-12	12	8
2f	-10	-6	13	6
3a	-18	99	3	94
3b	14	99	15	97
3 c	-6	99	16	97
3d	15	37	17	66
3e	30	98	30	98
3f	26	100	14	96
3g	27	99	12	95
3h	22	49	16	87
3i	23	101	16	96
4a	-4	4	-6	-5
4f	-32	5	-7	51
4 k	-28	-3	7	16
41	-19	-17	1	-8
4m	-31	-19	3	-2
4n	-35	-23	-18	-1
5f	-14	-3	-16	48

Table S2 (A). Growth inhibition (GI) of Mes-Sa mCh and Mes-Sa/Dx5 mCh cell lines at 20 μ M and at 200 μ M concentrations of compounds **1**, **2**, **3**, **4** and **5**. 0 refers to no GI, while 100 refers to complete GI. Results of compounds **3** against Mes-Sa mCh were already published in a previous article.¹¹

	GI at 20 µM		GI at 200 μM	
	Mes-Sa mCh	Mes-Sa/Dx5 mCh	Mes-Sa mCh	Mes-Sa/Dx5 mCh
6a	33	33	0	2
6b	22	26	15	6
6c	27	31	13	15
6d	0	14	-12	11
6g	-3	-5	7	10
6h	14	6	28	28
6i	1	6	-11	4
60	2	-3	5	-11
7a	13	70	11	92
7d	4	62	10	88
7e	6	57	1	64
7f	18	38	12	61
7h	20	96	28	97
8 a	9	11	3	7
8d	9	28	-3	17
8f	-2	21	-6	-4
8h	11	14	-3	13
9a	-16	3	-4	0
9d	4	24	4	24
9f	6	31	-7	-1
9h	-2	8	6	18
10a	82	96	90	93
10c	97	98	94	95

Table S2 (B). Growth inhibition (GI) of Mes-Sa mCh and Mes-Sa/Dx5 mCh cell lines at 20 μ M and at 200 μ M concentrations of compounds **6**, **7**, **8**, **9** and **10**. 0 refers to no GI, while 100 refers to complete GI. Results of compounds **6** against Mes-Sa mCh were already published in a previous article.¹¹

Starting 3	Reaction time (min)	Product	Yield (%)
3 a	15	6a	80
3b	10	6b	85
3c	5	6c	76
3d	7	6d	88
3f	150	60	50
3g	9	6g	77
3h	9	6h	90
3i	5	6i	72

Table S3 (A). Reaction time and yield of the products α -hydroxyphosphonic acids 6.

Table S3 (B). Reaction time and yield of the products α -hydroxyphosphonates 1, 2 and 3. *20 mol% (300 μ L instead of 150 μ L) of triethylamine was used.

Droduct	Reaction	$\mathbf{V}_{\mathbf{i}\mathbf{o}\mathbf{i}\mathbf{d}}(0)$
Flouuet	time (min)	1 leiu (%)
1a	10	95
1b	10	93
1c	10	93
1d	10	90
1e	5	95
1f	5	95
1g	30*	92
1h	30*	89
1i	90	68
1j	60*	98
11	10	96
2a	60	78
2b	60	80
2c	150	98
2d	70	79
2e	60	89
2f	45	88
3 a	30	95
3b	30	93
3c	30	88
3d	30	95
3e	30	91
3f	30	99
3g	330	88
3h	330	94
3 i	390	96

Droduct	Reaction	Yield
Flouuet	time (h)	(%)
4a	7	48
4f	2	82
4k	3	56
41	4	38
4m	4	89
4n	3	72
5f	7	65

Table S3 (C). Reaction time and yield of the products α -hydroxyphosphonates 4 and 5.

Table S3 (D). Reaction time and yield of the products α -phosphinoyloxiphosphonates 7, 8 and 9 (values for 7e, 10a and 10c are shown in the article).

Droduct	Reaction	Yield
FIOUUCI	time (h)	(%)
7a	48	57
7d	48	61
7f	48	70
7h	48	49
8a	24	59
8d	24	54
8f	24	72
8h	24	46
9a	24	59
9d	24	51
9f	24	80
9h	24	50