Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Revised Electronic Supplementary Information

Construction of Ratiometric Phosphorescent Assay with Long-Lived Carbon Quantum Dots and Inorganic nanoparticles for its application in environmental and biological system

Fengyi Wang,^{a,b} Qianqian Peng,^a Jing Hu,^a Xuan Hu,^a Huaqiao Peng,^c Lin Li,^c Dan Xiao,^{a,b} Baozhan Zheng ^{a,b*}and Juan Du ^{a,b*}

^a College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, PR China.

^b Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
^c The Second Research Institute of Civil Aviation Administration of China(CAAC), Chengdu 610041, PR China
*Corresponding authors: zhengbaozhan@scu.edu.cn (B. Zheng);

dujuanchem@scu.edu.cn (J. Du).

Fig. S1 The SEM image of CaTiO₃:Pr³⁺@SiO₂.

Fig.S2 The optimization of reaction time (A) and reaction temperature (B) of CDs.

Fig.S3 Effect of pH on the ratio phosphorescence intensity (I_{446}/I_{615}) of CDs-CaTiO₃:Pr³⁺@SiO₂ with HEPES buffer solution (10 mM, pH 7.0) in the absence (black line) and presence of Hg²⁺ (200 μ M) (red line) (A) and the ratio phosphorescence intensity (I_{446}/I_{615}) in the absence and presence of Hg²⁺(200 μ M) under different ionic strengths (NaNO₃) (B); The ratio phosphorescence intensity (I_{446}/I_{615}) of CDs-CaTiO₃:Pr³⁺@SiO₂ in the presence of Hg²⁺ (200 μ M) versus incubation time (C).

Fig.S4 Phosphorescence responses of CDs-CaTiO₃:Pr³⁺@SiO₂ upon the addition of different anions (200 μ M)((a) Blank (b) F⁻ (c) Cl⁻ (d) Br⁻ (e) l⁻ (f) C₂O₄²⁻ (g) CO₃²⁻ (h) HPO₄²⁻ (i)H₂PO₄⁻ (g) PO₄³⁻ (k)NO₃⁻ (l) S²⁻ (m) SO₃²⁻ (n) PPA) in absence and presence of Hg²⁺ (200 μ M) (λ_{ex} =345 nm), where I_{446} and I_{615} refer to the phosphorescence intensity of CDs and CaTiO₃:Pr³⁺@SiO₂, respectively.

Fig.S5 Phosphorescence responses of CDs-CaTiO₃:Pr³⁺@SiO₂ upon the addition of glucose, fructose, sucrose, starch and ascorbic acid (200 μ M) in the absence and presence of Hg²⁺ (200 μ M).

Fig.S6 The phosphorescence spectra of CDs in the presence of different Hg²⁺ concentrations from 0 to 300 μ M in HEPES buffer solution (10 mM, pH 7.0) (A); Plot of I/I_0 versus the concentration of Hg²⁺ from 0 to 300 μ M (where I_0 refers to the phosphorescence intensity of CDs and I is the phosphorescence intensity of CDs with the addition of various Hg²⁺ concentrations) (B).

Fig. S7 Images of CDs were taken with addition of various metal ions under sunlight.

Fig. S8 The UV-Vis absorption spectra of CDs in the presence of different metal ions.

Fig.S9 The absorption spectra of CDs in the presence of various Hg^{2+} concentrations and the emission spectrum of CDs under the excitation wavelength of 345 nm.

Table S1. Comparison of different analysis materials for the detection of Hg^{2+} in water samples

		Linear	Detection	Real Sample	Detection	
Analysis Material	Analytes	range	limit (nM)		methods	Reference
		(µM)				
				River sample		
Eu ³⁺ /CDs@MOF-253	Hg ²⁺	0.065–150	0.065	Fountain water	Ratiometric	1
				Tap water	fluorescence	
GO-PPV@MSN-	Hg ²⁺	0.060-0.18	71	_	Fluorescence	2
NH ₂ @SRh6G						
Carbon nanoparticles	Hg ²⁺	0-6	42	_	Ratiometric	3
-Rhodamine B					fluorescence	
Dual-emission Carbon				serum samples	Ratiometric	4
dot	Hg ²⁺	0-40	9.0	River water	fluorescence	
CDs- Rhodamine B	Hg ²⁺	0.5-10	25	_	Ratiometric	5
					fluorescence	
BSA-Ag NCs	Hg ²⁺	0.05-25	48.7	_	Ratiometric	6
					fluorescence	
Pyrene-functionalized				Tap water		
magnetic	Hg ²⁺	4.0 - 40	50	Pond water	Fluorescence	7
nanoparticles				Human Serum		
				Lake water	Ratiometric	
CDs-Ag NCs	Hg ²⁺	0-0.5	28	Tap water	fluorescence	8
				Mineral water		
CDs-CdSe@ZnS QDs	Hg ²⁺	0.2-2.0	100	Tap water	Ratiometric	9
				Lake water	fluorescence	
				Tap water	Ratiometric	
CDs-CaTiO ₃ :Pr ³⁺	Hg ²⁺	0.07-10	9.65	Pond water	phosphoresce	This work
@SiO ₂				Human Serum	nce	

References

- [1] B. Yan and X.Y. Xu, J Mater.Chem. C, 2016, 4, 1543-1549.
- [2] H. Zhang, C. Tong, J. Sha, B. Liu and C. Lü, Sens. Actuators B, 2015, 206,181-189.
- [3] M. Lan, J. Zhang, Y.S. Chui, P. Wang, X. Chen, C.S. Lee, H.L. Kwong and W. Zhang, ACS *Appl.Mater. Interfaces*, 2014, **6**, 21270-21278.
- [4] J. Zhao, M. Huang, L. Zhang, M. Zou, D. Chen, Y. Huang and S. Zhao, Anal. Chem., 2017, 89, 8044-8049.
- [5] S. Lu, D. Wu, G. Li, Z. Lv, Z. Chen, L. Chen, G. Chen, L. Xia, J. You and Y. Wu, RSC Adv., 2016, 6, 103169-103177.
- [6] D. Lu, C. Zhang, L. Fan, H. Wu, S. Shuang and C. Dong, Anal. Methods, 2013, 5, 5522-5527.
- [7] L. Chen, B. Zheng, Y. Guo, J. Du, D. Xiao and L. Bo, *Talanta* , 2013, **117**, 338-344.
- [8]Y. Yan, H. Yu, K. Zhang, M. Sun, Y. Zhang, X. Wang, and S. Wang, *Nano Research*, 2016, 7, 2088-2096.
- [9] B.Cao, C. Yuan, B. Liu, C. Jiang, G. Guan, and M. Y. Han, Anal. Chim. Acta, 2013, 786, 146-152.