Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supplementary Information

Redox-triggered Switch Based on Platinum(II) Acetylacetonate Complexes Bearing the Isomeric Donor–Acceptor Conjugation Ligand Showing High Second-Order Nonlinear Optical Response

Yuan Zhang, Hongqiang Wang, Jinting Ye, Yongqing Qiu*

Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China

^{*} Corresponding Author. Fax: +86 431 85098768.

E-mail addresses: <u>qiuyq466@nenu.edu.cn</u> (Y. Q. Qiu).

Figure S1. Simulated absorption spectrum of complex 2 at various levels of theory and experiment.

Figure S2. Mulliken spin populations of redox species.

Figure S3. Convergent behavior of β_{tot} value of all complexes dependent on the 100 states.

Figure S4. The molecular orbitals involved in the main excited states that contribute to the β_{tot} values for both reduced and oxide species.

Complex	charge	Spin multiplicity	<s<sup>2></s<sup>	eigenvalue	
1	1	2	0.765	0.75	
	-1	2	0.768	0.75	
2	1	2	0.774	0.75	
	-1	2	0.765	0.75	
3	1	2	0.760	0.75	
	-1	2	0.761	0.75	

Table S1. The calculated square of total spin and relative eigenvalue for all of oxidized and reduced complexes.

Complex	functional	$eta_{ ext{tot}}$	α_{xx}	α_{yy}	α_{zz}	α	<r<sup>2></r<sup>
1	ωB97XD	14.5	68.8	171.5	140.6	127.1	47.3
	LC-BLYP	7.4	66.8	157.2	132.2	118.7	
	BHandHLYP	22.5	67.6	174.1	136.8	126.2	
2	ωB97XD	32.9	85.8	168.6	123.5	126.0	42.0
	LC-BLYP	24.5	83.1	155.7	115.6	118.1	
	BHandHLYP	40.8	84.7	170.1	120.5	125.1	
3	ωB97XD	5.5	87.1	149.7	122.5	119.8	41.2
	LC-BLYP	3.4	84.2	139.2	115.7	113.1	
	BHandHLYP	6.9	85.8	148.3	119.3	117.8	

Table S2. Tensorial components of α (10⁻²⁴esu), the electronic spatial extent <R²> (10³a.u.) and total first hyperpolarizability (10⁻²⁹esu) of complex **1-3** calculated by the 6-31+G(d) basis set using various functionals.

basis set	1	2	3	
6-31G(d)	13.9	32.1	4.7	
6-31+G(d)	14.5	32.9	5.5	
6-311+G(d)	14.2	32.5	5.3	
6-311G(d)	13.7	31.4	4.8	

Table S3. The first hyperpolarizability (10^{-29}esu) of all neutral complexes computed by ω B97XD functional with various basis sets.