SUPPLEMENTARY INFORMATION

Organometallic Chemistry of New Carbon Material IV. Structure and Dynamic Behavior of Group 6 metal Tricarbonyl Complexes of Graphene and Perforated Graphene: A DFT Study

N. S. Zhulyaev, I. P. Gloriozov, M. S. Nechaev, F. Gam, Yu. F. Oprunenko, J.-Y. Saillard

Table S1. Selected bond lengths (Å) and angles (°) for the optimized structure of coronene I, comparison with previous DFT, X ray and electron diffraction data.

Table S2. Selected bond lengths (Å) and angles (°) for the optimized structure of kekulene II and comparison with X ray and previous DFT calculations.

Table S3. Calculated and experimental chemical shifts ¹H and ¹³C (ppm) for I, II, Ia,b-M and IIa,b-M (M=Cr,Mo). Atoms numbering as in Fig.3. Data for W were not calculated.

Table S4. Symmetrical (*A*) and unsymmetrical (*E*) v_{CO} vibrational frequencies (in cm⁻¹) complexes **Ia,b-M IIa,b-M**. Vibrational frequencies of (η^6 -naphthalene)M(CO)₃ V (M=Cr, Mo, W) are presented for comparison.

Table S5. NICS (1) data calculated for I and II. In brackets: NICS (0) extracted from literature.

Table S6. Selected computed data for the optimized structures of **Ia,b-M**. Relative energies in kcal/mol, bond lengths in Å.

Table S7. Selected computed data for the optimized structures **IIa,b-M**. Relative energies in kcal/mol; bond lengths in Å, for all **IIa-M** $\Delta G=0$ kcal/mol; for **IIb-M** $\Delta G=1.6$ kcal/mol (Mo) $\Delta G=3.1$ kcal/mol (W).

Table S8. Selected bond lengths in TS(Ia-b), IM(Ia-b), TS' (Ia-b) for Mo and W complexes, Å.

Table S9. Selected bond lengths in TS(Ia-a) for Cr, Mo, W complexes, Å.

Table S10. Selected bond lengths in TS(IIa-b) for Cr, Mo, W complexes, Å. Table.

S11. Experimental for related complexes and calculated IR v_{CO} values for metal tricarbonyl complexes of graphene (cm⁻¹). Table S12. Computed bond lengths (Å) in model graphene III.

Table	e S1.	Selected	bond	lengths	(Å)	and	angles	(°)	for the	optimized	structure	of	coronene	I,
comp	ariso	n with pr	revious	DFT, X	ray	and	electron	n di	ffractio	n data.				

Bond lengths	PBE/L2	X ray	Δ	B3LYP/6-31G	Δ(DFT)	Electron diffraction
C1-C4	1.423	1.405	0.018	1.426	-0.003	1.444
C1-C2	1.425	1.413	0.012	1.424	0.001	1.381
C2-C3	1.426	1.412	0.014	1.423	0.003	1.438
C4-C5	1.375	1.360	0.015	1.375	0.000	1.362
С-Н	1.092	0.983	0.109	1.093	-0.001	1.090
C4-C1-C2	118.76	118.74	0.02	118.77	-0.01	
C1-C2-C3	120.00	118.84	1.16	120.00	0.00	
C5-C4-C1	121.26	122.02	-0.76	121.22	0.040	

Δ: Difference between X ray and our DFT results, J. M. Robertson and J. G. White, *J. Chem. Soc. (Resumed)*, 1945, 607.

 Δ (DFT): Difference between our DFT results and DFT from the literature (G.R. Jenness and K.D. Jordan, *J. Phys. Chem. C*, 2009, **113**, 10242).

Table S2. Selected bond lengths (Å) and angles (°) for the optimized structure of kekulene II and comparison with X ray and previous DFT calculations.

Bond lengths	PBE/L2	X ray	Δ	B3LYP/ 6-31G	Δ(DFT)
C1-C2	1.439	1.445	-0.006	1.441	-0.002
C1-C6	1.366	1.350	0.016	1.362	0.004
C3-C4	1.457	1.456	0.001	1.460	-0.003
C4-C5	1.395	1.394	0.001	1.394	0.001
C-H _{in}	1.085	-	-	-	-
C-H _{out}	1.093	-	-	-	-
C6-C1-C2	121.8	122.0	-0.2	-	-
C2-C3-C4	119.9	119.9	0.0	-	-
C4-C5-C7	123.5	123.7	-0.2	-	-
C5-C7-C8	118.4	118.3	0.1	-	-

A: Difference between X ray and our DFT results (H. A. Staab, F. Diederich, C. Krieger and D. Schweitzer, *Chem. Ber.*, 1983, **116**, 3504).

 Δ (DFT): Difference between our DFT and DFT from the literature (H. Jiao, P.V.R. Schleyer, *Angew. Chem. Int. Ed.in English*, 1996, **35**, 2383).

		1		-	-	1	
	Atom	Ligan	d (exp.)	ļ	Cr	l N	lo
	710111	Ia	IIb	Ι	II	I	II
	C1	128.8	135.2	95.1	111.2	96.6	113.6
	C2	128.8	138.4	95.2	110.5	96.8	114.7
	C3	132.2	133.0	109.1	95.1	112.2	95.6
	C4	135.9	138.4	106.0	107.8	109.2	110.7
	C5	135.9	135.2	106.0	108.3	109.1	109.6
a	C6	-	119.7	-	81.8	-	84.6
	C _{CO}	-	-	219.4; 227.7	228,2/ 228.5/229.4	220.3; 226.8	230.4/230.7
	Спроч	-	10.48	131.6-137.5	8.87	130.1-136.3	10.1/10.7/10.9
	H _{coord} (I)/ H _{inner} (II)	-	8.67; 9.05	6.41	6.68/7.64/ 8.04	6.54	6.76/7.44/ 7.89/8.1-8.7
	H _{other} (I)/ H _{outer} (II)	9.32	135.2	8.50-8.86	111.2	8.31-8.67	113.6
	C1	135.9	134.26	103.5	95.7	107.6	96.2
	C2	135.9	134.26	95.7	95.5	100.8	96.2
	C3	132.2	138.4	142.8	113.4	138.8	116.5
	C4	128.8	135.2	131.8	110.3	131.5	113.3
	C5	128.8	135.2	134.5	135.6	134.3	113.3
b	C6	-	138.4	-	110.4	-	116.5
	C _{CO}	-	-	225.5	223.4/ 227.6	228.1	224.1/228.7
	H(I)/ H _{inner} (II)	9.32	10.48	9.96; 9.77	10.83	9.30; 9.49	10.3/10.7/10.8
	H _{outer} (II)		8.67; 9.05		6.64/ 6.65		6.5/8.1-8.7
	Atom	Ligan	d (exp.)		Cr	N	lo
	Atom	Ia	II ^b	Ι	II	I	II
	C1	128.8	135.2	95.1	111.2	96.6	113.6
	C2	128.8	138.4	95.2	110.5	96.8	114.7
	C3	132.2	133.0	109.1	95.1	112.2	95.6
	C4	135.9	138.4	106.0	107.8	109.2	110.7
	C5	135.9	135.2	106.0	108.3	109.1	109.6
a	C6	-	119.7	-	81.8	-	84.6
	C _{CO}	-	-	219.4; 227.7	228,2/ 228.5/229.4	220.3; 226.8	230.4/230.7
	Спроч	-	10.48	131.6-137.5	8.87	130.1-136.3	10.1/10.7/10.9
	H _{coord} (I)/ H _{inner} (II)	-	8.67; 9.05	6.41	6.68/7.64/ 8.04	6.54	6.76/7.44/ 7.89/8.1-8.7
	H _{other} (I)/ H _{outer} (II)	9.32	135.2	8.50-8.86	111.2	8.31-8.67	113.6
	<u>C1</u>	135.9	134.26	103.5	95.7	107.6	96.2
	C2	135.9	134.26	95.7	95.5	100.8	96.2
	C3	132.2	138.4	142.8	113.4	138.8	116.5
	C4	128.8	135.2	131.8	110.3	131.5	113.3
	C5	128.8	135.2	134.5	135.6	134.3	113.3
b	<u>C6</u>	-	138.4	-	110.4	_	116.5
	C _{CO}	-	-	225.5	223.4/227.6	228.1	224.1/228.7
	H(I)/		10.40	0.0(0.77	10.92	0.20:0.40	10 2/10 7/10 0
	$H_{inner}(II)$	9.32	10.48	9.96; 9.77	10.85	9.50, 9.49	10.3/10.7/10.8

Table S3. Calculated and experimental chemical shifts ¹H and ¹³C (ppm) for I, II, Ia,b-M and IIa,b-M (M=Cr,Mo). Atoms numbering as in Fig.3. Data for W were not calculated.

a) J. M. Robertson and J. G. White, J. Chem. Soc. (Resumed), 1945, 607. b) H. A. Staab, F. Diederich, C. Krieger and D. Schweitzer, Chem. Ber., 1983, 116, 3504.

Table S4. Symmetrical (*A*) and unsymmetrical (*E*) v_{CO} vibrational frequencies (in cm⁻¹) complexes **Ia,b-M IIa,b-M**. Vibrational frequencies of (η^6 -naphthalene)M(CO)₃ V (M=Cr, Mo, W) are presented for comparison.

PBE/L2	Ia-M	Ib-M	IIa-M	IIb-M	V Experiment*	V BLYP/JMW**
	<i>E</i> : 1922.98	1915.93	1930.37	1919.61	1893ª	1917.6
$v_{\rm CO}$, sm ⁻¹	<i>E</i> : 1931.55	1916.34	1936.16	1934.49	1908	1928.3
	A: 1977.10	1969.46	1978.37	1978.07	1971	1978.2
	<i>E</i> : 1912.74	1906.30	1919.46	1910.37	1859 ^b	-
$v_{\rm CO}$, sm ⁻¹	<i>E</i> : 1925.27	1906.32	1926.99	1925.79	1883	-
	A: 1975.23	1966.35	1974.12	1974.88	1960	-
M-W	<i>E</i> : 1916.02	1910.20	1922.40	1912.80	1854 ^b	-
$v_{\rm CO}$, sm ⁻¹	<i>E</i> : 1925.68	1910.32	1929.83	1924.65	1879	-
	A: 1974.91	1966.76	1976.42	1973.07	1956	-

* a) Yu.F. Oprunenko, N.G. Akhmedov, D.N. Laikov, S.G. Malyugina, V.I. Mstislavsky, V.A. Roznyatovsky and N.A. Ustynyuk, *J. Organomet. Chem.*, 1999, **583**, 136. b) data for V (Mo, W) were taken from Oprunenko, *Doctor of Science (Habilitation) Thesis*, Department of Chemistry, M.V. Lomonosov Moscow State University, 1999, Moscow

** B.V. Lokshin, N.E. Borisova, B.M. Senyavin and M.D. Reshetova, Russ. Chem. Bull., 2002, 51, 1656.

Table S5. NICS (1) data calculated for I and II. In brackets: NICS (0) extracted from literature

a) H. Jiao, P.V.R. Schleyer, *Angew. Chem. Int. Ed.in English*, 1996, **35**, 2383. b) F. De Proft and P. Geerlings, *Chem. Rev.*, 2001, **101**, 1451. c) J. M. Martin, *Chem. Phys. Lett.*, 1996, **262**, 97.

		Ia-M		Ib-M		
	Cr	Mo	W	Cr	Mo	W
ΔΕ	0.0	0.0	0.0	12.0	11.0	12.5
ΔG	0.0	0.0	0.0	12.7	10.1	12.4
M-ligand	1.768	1.909	1.880	1.811	2,025	1.991
C1-C2	1.403	1.403	1.408	1.436	1,438	1.440
C2-C3	1.436	1.441	1.443	1.438	1,435	1.439
C3-C4	1.434	1.435	1.437	1.416	1.417	1.416
C4-C5	1.443	1.447	1.449	1.383	1.380	1.381

Table S6. Selected computed data for the optimized structures of **Ia,b-M**. Relative energies in kcal/mol, bond lengths in Å.

Table S7. Selected computed data for the optimized structures **IIa,b-M**. Relative energies in kcal/mol; bond lengths in Å, for all **IIa-M** $\Delta G=0$ kcal/mol; for **IIb-M** $\Delta G=1.6$ kcal/mol (Mo) $\Delta G=3.1$ kcal/mol (W).

Parameter		IIa-M			IIb-M	
Metal	Cr	Mo	W	Cr	Mo	W
ΔG	0.0	0.0	0.0	5.9	1.6	3.1
M-C1	2.313	2.478	2.438	2.206	2.356	2.337
M-C2	2.304	2.468	2.421	2.206	2.356	2.337
M-C3	2.202	2.362	2.372	2.342	2.501	2.477
M-C4	2.255	2.401	2.406	2.366	2.535	2.498
А	~6°	~6°	~8°	~1°	~2°	~2°
C1-C2	1.432	1.433	1.440	1.402	1.402	1.408
C2-C3	1.437	1.440	1.436	1.443	1.448	1.449
C3-C4	1.423	1.424	1.433	1.442	1.443	1.445
C4-C5	1.445	1.450	1.444	1.466	1.470	1.471

A: deviation of coordinated ring plane with respect to the uncoordinated part of the ligand (°)

Table S8. Selected bond lengths in TS(Ia-b), IM(Ia-b), TS' (Ia-b) for Mo and W complexes, Å.

	Мо	W
TS	a=2.404	a=2.334
	b=2.941	b=2.894
	c=2.745	c=2.687
	d=2.694	d=2.606
IM	a=2.373	a=2.298
	b=2.735	b=2.679
	c=2.842	c=2.761
	d=2.736	d=2.677
TS'	a=2.381	a=2.316
	b=2.719	b=2.640
	c=2.885	c=2.848
	d=2.718	d=2.640

Table S9. Selected bond lengths in **TS(Ia-a)** for Cr, Mo, W complexes, Å.

	Cr	Мо	W
a	2.155	2.335	2.273
b	2.495	2.647	2.605
c	2.495	2.647	2.605
d	2.640	2.837	2.722

Table S10. Selected bond lengths in TS(IIa-b) for Cr, Mo, W complexes, Å.

	Cr	Мо	W
a	2.159	2.353	2.301
b	2.296	2.445	2.356
c	2.485	2.677	2.612
d	2.745	2.962	2.930

Table. S11. Experimental (related complexes) and calculated IR v_{CO} values for IIIa and IIIe complexes (cm⁻¹).

\backslash	Cr		Мо		W		
	DFT	Experiment*	DFT	Experiment**	DFT	Experiment**	
IIIa	E:1948,91;	E:1893;	E:1938,02;	E:1859;	E:1943.63;	E:1856;	
	1948.93	1908	1938.17	1883	1943.65	1879	
	A: 1988.50	A:1971	A: 1984.62	A:1960	A: 1987.43	A:1956	
IIIe	E:1941.96;	E:1893;	E:1932.24;	E:1859;	E:1936.92;	E:1856;	
	1955.15	1908	1948.37	1883	1951.12	1879	
	A:1992.35	A:1971	A:1990.95	A:1960	A:1992.10	A:1956	

* Oprunenko Yu.F., Doctor of science thesis (Habilitation), Department of Chemistry, M.V. Lomonosov Moscow State University, **1999**, Moscow, 350c; ** R.S. Armstrong, M.J. Aroney, C.M. Barnes, K.W. Nugent, *Appl. Organomet. Chem.*, 1990, **4**, 569.

Table S12. Computed bond lengths (Å) in model graphene III.

C1-C2	1.422
C2-C3	1.424
C3-C4	1.427
C4-C5	1.423
C5-C6	1.439
C6-C7	1.394
C6-C8	1.440
C8-C9	1.364
С8-Н	1.094