## **Supplementary Information (SI)**

Ammonium hexadeca-oxo-heptavanadate microsquares. A new member in the family of the  $V_7O_{16}$  mixed-valence nanostructures

Daniel Navas, José Pedro Donoso, Claudio Magón, Clivia Sotomayor-Torres, Mabel Moreno, Harold Lozano, Eglantina Benavente, Guillermo González

### 1. Experimental KMnO<sub>4</sub> Permanganometry (Redox Titration)

The permanganometric titration represented by the following equation:

$$5 \text{ VO}_{2^+(ac)} + \text{MnO}_{4^-(ac)} + 6 \text{ H}_2\text{O}_{(1)} \rightarrow 5 \text{ VO}_{3^-(ac)} + \text{Mn}^{2+}_{(ac)} + 12\text{H}^+_{(ac)}$$

The permanganometric titration is realized to quantify the proportion of V(V)/ /V (IV) of the oxide state of the mixture. Vanadium (IV) found in the hybrid nanocomposite in both the laminar and micro squares, are inserted in a graph of calibration curve that was made to calculate approximately the V (IV)% in the sample using different concentrations of V (V)/V (IV) with V<sub>2</sub>O<sub>5</sub> and V<sub>2</sub>O<sub>4</sub> as standard vanadium oxides (Table SI). The preparation mixtures are in a 100 mL Erlenmeyer flask wich 0.100 g of vanadium oxides depending on the different concentrations and dissolved in H<sub>2</sub>SO<sub>4</sub> 1M at 70 °C over 12h. 25 ml aliquots are taken in triplicate and titrated with 0.1 N KMnO<sub>4</sub> 0.1 N standardized previously with Na<sub>2</sub>C<sub>2</sub>O<sub>4</sub>.

#### 2. Tables

| O.E. | Binding<br>Energy<br>(eV) | FHWM<br>(eV) | Area<br>(a.u.) | Area<br>(%) |
|------|---------------------------|--------------|----------------|-------------|
| +4   | 51588                     | 2,165        | 37796,8        | 74,88       |
| +5   | 517,33                    | 1,725        | 12677,7        | 25,12       |

**Table S1**. X-Ray photoelectronspectrum (XPS) of  $NH_4V_7O_{16}$  nanosquares. Contribution of the components Vanadium (IV) and (V) to the peak V2p3/2. Reference: O1s at 530 Ev

| FT-IR ion $NH_4^+$ (cm <sup>-1</sup> ) |                     |                           |                                              |  |  |  |  |  |
|----------------------------------------|---------------------|---------------------------|----------------------------------------------|--|--|--|--|--|
| Assignation                            | solid               | phase gas                 |                                              |  |  |  |  |  |
|                                        | $(NH_4)_2V_7O_{16}$ | $[NH_4(NH_3)_2]$          | $[\mathrm{NH}_4(\mathrm{H}_2\mathrm{O})n]^+$ |  |  |  |  |  |
| $\nu_{1 \text{ free}}$                 | 3337                | 2890                      | 3363                                         |  |  |  |  |  |
| $v_{3 free}$                           | 3395 - 3446         | 3395                      | 3375 - 3365                                  |  |  |  |  |  |
| $v_{2 \text{ free}}$                   | 1515 - 1556         |                           |                                              |  |  |  |  |  |
| $v_{4 free}$                           | 1396 - 1433         |                           |                                              |  |  |  |  |  |
| $\nu_1$ bonding                        | 2919                | 2615 - 2660               | 2831                                         |  |  |  |  |  |
| $v_{3 \text{ bonding}}$                | 3169 - 3198         | 2865                      | 2961                                         |  |  |  |  |  |
| $v_2$ bonding                          | 1691 - 1714         |                           |                                              |  |  |  |  |  |
| $v_{4 \text{ bonding}}$                | 1617 - 1647         | 1550 ( 2 v <sub>4</sub> ) |                                              |  |  |  |  |  |
|                                        |                     |                           |                                              |  |  |  |  |  |

Table S2. FTIR Spectrum of  $(NH_4)_2V_7O_{16}$  microsquares.  $NH_4^+$  ion vibration modes

**Table S3.** FTIR spectra in the absorption range of oxovanadates for:  $(NH_4)_2V_7O_{16}$ , the nanocomposite  $V_2O_5$ -HDA,  $VO_xNTs$  and its precursor<sup>1</sup>, and polycrystalline  $V_2O_5^{2,3}$ .

|                                                                   | $\nu_s(\mathrm{VO}_A)$ | $v_a(VO_A)$ | $v_a(VO_BV)$ | $v_{s}(VO_{B}V)$ | $\nu_s(VO_C)$ | $\nu_a(\mathrm{VO}_C)$ | $\delta(\text{VO}_{\text{C})}$ | $\delta(VO_BV)$ |
|-------------------------------------------------------------------|------------------------|-------------|--------------|------------------|---------------|------------------------|--------------------------------|-----------------|
| V <sub>2</sub> O <sub>5</sub>                                     | 1023                   | 976         | 815          | 472              | 701           | 700                    | 502                            | 404             |
|                                                                   | 994                    |             |              | 570              |               |                        | 510                            | 470             |
|                                                                   |                        |             |              | 526              |               |                        | 480                            |                 |
| $V_2O_5/HDA^1$                                                    | 956                    | 839         |              |                  | 720           | 640                    | 517                            |                 |
|                                                                   | 911                    |             |              |                  |               |                        |                                |                 |
| $V_2O_5/HDA^{2,3}$                                                | 941                    | 854sh       |              |                  | 721           | 646                    | 509                            | 457sh           |
| VO <sub>x</sub> NT                                                | 997                    | 991sh       | 797          |                  | 729           |                        | 573                            |                 |
| (NH <sub>4</sub> ) <sub>2</sub> V <sub>7</sub> O <sub>16</sub> MC | 941                    |             |              |                  | 721           | 644                    | 511                            |                 |
|                                                                   |                        |             |              |                  |               |                        |                                |                 |

A: monocoordinated Oxygen, B: bridging oxygen C: three-coordinated oxygen

# 3. Figures



Figure S1. Determination of the two-dimensional cell-constant "a" for  $(NH_4)_2V_7O_{16}$ , from Bragg (hk0) reflections.



Figure S2. DRX patterns of products prepared with thermal treatments of different duration, from 0.5 to 7 days.



**Figure S3.** XRD pattern of products obtained after 10 days hydrothermal treatment, compared with the pattern characteristic of VO<sub>2</sub> Magnelli V<sub>x</sub>O<sub>2</sub> phases (JCPDS No. 340608).<sup>4</sup>



**Figure. S4.** SEM images of six-times rotationally symmetrical vanadium oxide-based nanostructures with cog-like architecture.<sup>1</sup>



**Figure S5.** Schematic description of the possible function of alkylamine amphiphiles in the folding and rolling of hybrid sheets V<sub>7</sub>O<sub>16</sub> / amine

#### Reference

- 1. W. Chen, L. Q. Mai, J. F. Peng, Q. Xu and Q. Y. Zhu, J Mater Sci., 2004, 39, 2625–2627.
- 2. P. Clauws J. Broeckx J. Vennik. Basic Solid State Phys 1985, 131, 459-473
- 3. L.Abello, E. Husson, R.G. Lucazeau. Journal of Solid State Chemistry, 1985, 56, 379-389
- 4. C. O'Dwyer, V. Lavayen, D. Fuenzalida, S. Newcomb, M. A. Santa-Ana, E. Benavente and G. González, *Phys. Status Solidi (b)*, **2007**, 244, 4157–4160.