Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

Nature of the E---E' Interactions (E, E' = O, S, Se, and Te) at Naphthalene 1,8-Positions with Fine Details of the Structures: Experimental and Theoretical Investigations

Satoko Hayashi,^{*,1} Manabu Uegaito,¹ Taro Nishide,¹ Eiichiro Tanaka,¹ Waro Nakanishi,^{*,1} Takahiro Sasamori,² Norihiro Tokitoh³ and Mao Minoura⁴

 ¹ Faculty of Systems Engineering, Wakayama University, 930 Sakaedani, Wakayama 640-8510, Japan: E-mail: hayashi3@sys.wakayama-u.ac.jp and nakanisi@sys.wakayama-u.ac.jp
 ² In Graduate School of Natural Sciences, Nagoya City University, Yamanohata 1, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8501, Japan,
 ³ Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan,
 ⁴ Department of Chemistry, College of Science, Rikkyo University, Toshima-ku, Tokyo, 171-8501,

Japan.

Table of Contents	Pages
Survey of QTAIM, closely related to QTAIM dual functional analysis	2–4
Criteria for classification of interactions: behavior of typical interactions elucidated	5
by QTAIM-DFA	
Characterization of interactions	5–7
Additional figures and tables	8–13
References	14
Computation information and geometries of compounds	15–42

Survey of QTAIM, closely related to QTAIM dual functional analysis (QTAIM-DFA)

The bond critical point (BCP; *) is an important concept in QTAIM. The BCP of $(\omega, \sigma) = (3, -1)^{S1}$ is a point along the bond path (BP) at the interatomic surface, where charge density $\rho(\mathbf{r})$ reaches a minimum. It is donated by $\rho_b(\mathbf{r}_c)$, so are other QTAIM functions, such as the total electron energy densities $H_b(\mathbf{r}_c)$, potential energy densities $V_b(\mathbf{r}_c)$, and kinetic energy densities $G_b(\mathbf{r}_c)$ at the BCPs. A chemical bond or interaction between A and B is denoted by A–B, which corresponds to the BP between A and B in QTAIM. We will use A-*-B for BP, where the asterisk emphasizes the presence of a BCP in A–B.

The sign of the Laplacian $\rho_b(\mathbf{r}_c)$ ($\nabla^2 \rho_b(\mathbf{r}_c)$) indicates that $\rho_b(\mathbf{r}_c)$ is depleted or concentrated with respect to its surrounding, since $\nabla^2 \rho_b(\mathbf{r}_c)$ is the second derivative of $\rho_b(\mathbf{r}_c)$. $\rho_b(\mathbf{r}_c)$ is locally depleted relative to the average distribution around \mathbf{r}_c if $\nabla^2 \rho_b(\mathbf{r}_c) > 0$, but it is concentrated when $\nabla^2 \rho_b(\mathbf{r}_c) < 0$. Total electron energy densities at BCPs ($H_b(\mathbf{r}_c)$) must be a more appropriate measure for weak interactions on the energy basis.^{S1–S8} $H_b(\mathbf{r}_c)$ are the sum of kinetic energy densities ($G_b(\mathbf{r}_c)$) and potential energy densities ($V_b(\mathbf{r}_c)$) at BCPs, as shown in Equation (2) (S1). Electrons at BCPs are stabilized when $H_b(\mathbf{r}_c) < 0$, therefore, interactions exhibit the covalent nature in this region, whereas they exhibit no covalency if $H_b(\mathbf{r}_c) > 0$, due to the destabilization of electrons at BCPs under the conditions.^{S1} Equation (S2) represents the relation between $\nabla^2 \rho_b(\mathbf{r}_c)$ and $H_b(\mathbf{r}_c)$, together with $G_b(\mathbf{r}_c)$ and $V_b(\mathbf{r}_c)$, which is closely related to the virial theorem.

$$H_{\rm b}(\boldsymbol{r}_{\rm c}) = G_{\rm b}(\boldsymbol{r}_{\rm c}) + V_{\rm b}(\boldsymbol{r}_{\rm c}) \tag{S1}$$

$$(\hbar^2/8m)\nabla^2\rho_{\rm b}(\mathbf{r}_{\rm c}) = H_{\rm b}(\mathbf{r}_{\rm c}) - V_{\rm b}(\mathbf{r}_{\rm c})/2 \tag{S2}$$

$$= G_{\rm b}(\mathbf{r}_{\rm c}) + V_{\rm b}(\mathbf{r}_{\rm c})/2 \tag{S2'}$$

Interactions are classified by the signs of $\nabla^2 \rho_b(\mathbf{r}_c)$ and $H_b(\mathbf{r}_c)$. Interactions in the region of $\nabla^2 \rho_b(\mathbf{r}_c) < 0$ are called shared-shell (SS) interactions and they are closed-shell (CS) interactions for $\nabla^2 \rho_b(\mathbf{r}_c) > 0$. $H_b(\mathbf{r}_c)$ must be negative when $\nabla^2 \rho_b(\mathbf{r}_c) < 0$, since $H_b(\mathbf{r}_c)$ are larger than $(\hbar^2/8m)\nabla^2 \rho_b(\mathbf{r}_c)$ by $V_b(\mathbf{r}_c)/2$ with negative $V_b(\mathbf{r}_c)$ at all BCPs (Equation (S2)). Consequently, $\nabla^2 \rho_b(\mathbf{r}_c) < 0$ and $H_b(\mathbf{r}_c) < 0$ for the SS interactions. The CS interactions are especially called *pure* CS interactions for $H_b(\mathbf{r}_c) > 0$ and $\nabla^2 \rho_b(\mathbf{r}_c) > 0$, since electrons at BCPs are depleted and destabilized under the conditions.^{S1a} Electrons in the intermediate region between SS and *pure* CS, which belong to CS, are locally depleted but stabilized at BCPs, since $\nabla^2 \rho_b(\mathbf{r}_c) > 0$ but $H_b(\mathbf{r}_c) < 0$.^{S1a} We call the interactions in this region *regular* CS,^{S4,S5} when it is necessary to distinguish from *pure* CS. The role of $\nabla^2 \rho_b(\mathbf{r}_c)$ in the classification can be replaced by $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$, since $(\hbar^2/8m)\nabla^2 \rho_b(\mathbf{r}_c) = H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$ (Equation (S2)). Scheme S1 summarizes the classification.

Scheme S1. Classification of interactions by the signs of $\nabla^2 \rho_b(\mathbf{r}_c)$ and $H_b(\mathbf{r}_c)$, together with $G_b(\mathbf{r}_c)$ and $V_b(\mathbf{r}_c)$.

We proposed QTAIM-DFA by plotting $H_b(\mathbf{r}_c)$ versus $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$ (= $(\hbar^2/8m)\nabla^2\rho_b(\mathbf{r}_c)$),^{S4a} after the proposal of $H_b(\mathbf{r}_c)$ versus $\nabla^2\rho_b(\mathbf{r}_c)$.^{S4b} Both axes in the plot of the former are given in energy unit, therefore, distances on the (x, y) (= $(H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$, $H_b(\mathbf{r}_c)$) plane can be expressed in the energy unit, which provides an analytical development. QTAIM-DFA incorporates the classification of interactions by the signs of $\nabla^2\rho_b(\mathbf{r}_c)$ and $H_b(\mathbf{r}_c)$. Scheme S2 summarizes the QTAIM-DFA treatment. Interactions of *pure* CS appear in the first quadrant, those of *regular* CS in the fourth quadrant and SS interactions do in the third quadrant. No interactions appear in the second one.

Scheme S2. QTAIM-DFA: Plot of $H_b(\mathbf{r}_c)$ versus $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$ for Weak to Strong Interactions

In our treatment, data for perturbed structures around fully optimized structures are also employed for the plots, together with the fully optimized ones (see Figure S1).^{S4–S8} We proposed the concept of the "dynamic nature of interaction" originated from the perturbed structures. The behavior of interactions at the fully optimized structures corresponds to "the static nature of interactions", whereas that containing perturbed structures exhibit the "dynamic nature of interaction" as explained below.

The method to generate the perturbed structures is discussed later. Plots of $H_b(\mathbf{r}_c)$ versus $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$ are analyzed employing the polar coordinate (R, θ) representation with (θ_p, κ_p) parameters.^{S4a,S5–S8} Figure S1 explains the treatment. $R \ln (R, \theta)$ is defined by Equation (S3) and given in the energy unit. R corresponds to the energy for an interaction at BCP of the $[(H_b(\mathbf{r}_c))^2 + (H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2)^2]^{1/2}$ form in the plot, where R = 0 for the enough large interaction distance. The plots show a spiral stream, as a whole. θ in (R, θ) defined by Equation (S4), measured from the *y*-axis, controls the spiral stream of the plot. Each plot for an interaction shows a specific curve, which provides important information of the interaction (see Figure S1). The curve is expressed by θ_p and κ_p . While θ_p , defined by Equation (S5) and measured from the *y*-direction, corresponds to the tangent line of a plot, where θ_p is calculated employing data of the perturbed structures with a fully-optimized structure and κ_p is the curvature of the plot (Equation (S6)). While (R, θ) correspond to the static nature, (θ_p, κ_p) represent the dynamic nature of interactions. We call (R, θ) and (θ_p, κ_p) QTAIM-DFA parameters, whereas $\rho_b(\mathbf{r}_c)$, $\nabla^2 \rho_b(\mathbf{r}_c)$, $V_b(\mathbf{r}_c)$, $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$ belong to QTAIM functions. $k_b(\mathbf{r}_c)$, defined by Equation (S7), is an QTAIM function but it will be treated as if it were an QTAIM-DFA parameter, if suitable.

Figure S1. Polar (*R*, θ) coordinate representation of $H_b(\mathbf{r}_c)$ versus $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$, with (θ_p , κ_p) parameters.

$R = (x^2 + y^2)^{1/2}$	(S3)
$\theta = 90^{\circ} - \tan^{-1}(v/r)$	(\$4)

$$\theta_{\rm p} = 90^{\circ} - \tan^{-1} \left(\frac{dv}{dx} \right)$$
 (S4)
 $\theta_{\rm p} = 90^{\circ} - \tan^{-1} \left(\frac{dv}{dx} \right)$ (S5)

$$\kappa_{\rm p} = |d^2 y/dx^2| / [1 + (dy/dx)^2]^{3/2}$$
(S6)

$$k_{\rm b}(\boldsymbol{r}_{\rm c}) = V_{\rm b}(\boldsymbol{r}_{\rm c})/G_{\rm b}(\boldsymbol{r}_{\rm c}) \tag{S7}$$

where
$$(x, y) = (H_b(r_c) - V_b(r_c)/2, H_b(r_c))$$

Criteria for classification of interactions: behavior of typical interactions elucidated by QTAIM-DFA

 $H_b(\mathbf{r}_c)$ are plotted versus $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$ for typical interactions in vdW (van der Waals interactions), HBs (hydrogen bonds), CT-MCs (molecular complexes through charge transfer), X₃⁻ (trihalide ions), CT-TBPs (trigonal bipyramidal adducts through charge-transfer), Cov-w (weak covalent bonds) and Cov-s (strong covalent bonds).^{S4–S8} Rough criteria are obtained by applying QTAIM-DFA, after the analysis of the plots for the typical interactions according to Equations (S3)–(S7). Scheme S3 shows the rough criteria, which are accomplished by the θ and θ_p values, together with the values of $k_b(\mathbf{r}_c)$. The criteria will be employed to discuss the nature of interactions in question, as a reference.

Scheme S3. Rough classification and characterization of interactions by θ and θ_p , together with $k_b(\mathbf{r}_c)$ (= $V_b(\mathbf{r}_c)/G_b(\mathbf{r}_c)$).

Characterization of interactions

The characterization of interactions is explained employing [$^{1}Cl^{-2}Cl^{-3}Cl$]⁻. The wide range of the perturbed structures were generated by partially optimizing $r(^{2}Cl^{-3}Cl)$ in [$^{1}Cl^{-2}Cl^{-3}Cl$]⁻, assuming the $C_{\infty\nu}$ symmetry, with $r(^{1}Cl^{-2}Cl)$ being fixed in the wide range. The partial optimization method is called POM.^{S4b,S5} The QTAIM functions, such as $V_b(\mathbf{r}_c)$, $G_b(\mathbf{r}_c)$, $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$ are calculated at BCPs for the wide varieties of the perturbed structures of [$^{1}Cl^{-2}Cl^{-3}Cl$]⁻. $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$ and $H_b(\mathbf{r}_c)$ are plotted versus the interaction distances $r(^{1}Cl^{-2}Cl)$ in the perturbed structures of [$^{1}Cl^{-2}Cl^{-3}Cl$]⁻. $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$ and $H_b(\mathbf{r}_c)$ are plotted versus the interaction distances $r(^{1}Cl^{-2}Cl)$ in the perturbed structures of [$^{1}Cl^{-2}Cl^{-3}Cl$]⁻, in the wide range. Figure S2 shows the plots. Each plot is analyzed using a regression curve of the ninth function and the first derivative of each regression curve is obtained. As shown in Figure S2, the maximum value of $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$ ($d(H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$)/ $d\mathbf{r} = 0$) does to the borderline between CT-MC and CT-TBP. However, it seems difficult to find a characteristic point

corresponding to the borderline between *t*-HB and CT-MC in nature. Therefore, the borderline is tentatively given by $\theta_p = 150^\circ$ based on the expectation form the experimental results, where θ_p is defined by $[90^\circ - \tan^{-1}[dH_b(\mathbf{r}_c)/d(H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2)]]$ in the plot of $H_b(\mathbf{r}_c)$ versus $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$. The proposed classification and characterization of interactions, by means of the QTAIM functions of $H_b(\mathbf{r}_c)$, $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$, $G_b(\mathbf{r}_c)$, and/or $V_b(\mathbf{r}_c)$, are summarized in Table S1.

Figure S2. Plot of $H_b(\mathbf{r}_c)$ versus w in $r({}^1\text{Cl}{}^2\text{Cl}) = r_o({}^1\text{Cl}{}^2\text{Cl}) + wa_o$ for ${}^1\text{Cl}{}^2\text{Cl}{}^3\text{Cl}{}^-$ (a) with the magnified picture of (a) (b) and that of $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$ versus w (c). Typical hydrogen bonds without covalency and typical hydrogen bonds with covalency are abbreviated as t-HB without cov. and t-HB with cov., respectively, whereas Cov-w and Cov-s stand for weak covalent bonds and strong covalent bonds, respectively.

1 1	y 1	
ChP/Interaction	Requirements by $H_{\rm b}(\mathbf{r}_{\rm c})$ and $V_{\rm b}(\mathbf{r}_{\rm c})$	Requirements by $G_{\rm b}(\mathbf{r}_{\rm c})$ and $V_{\rm b}(\mathbf{r}_{\rm c})$
Origin	$H_{\rm b}(\mathbf{r}_{\rm c}) - V_{\rm b}(\mathbf{r}_{\rm c})/2 = 0; H_{\rm b}(\mathbf{r}_{\rm c}) = 0$	$G_{\rm b}(\boldsymbol{r}_{\rm c})=0; \ V_{\rm b}(\boldsymbol{r}_{\rm c})=0$
vdW	$H_{\rm b}(r_{\rm c}) > 0; \mathrm{d}H_{\rm b}(r_{\rm c})/\mathrm{d}(-r) > 0$	$G_{\rm b}(\boldsymbol{r}_{\rm c}) > -V_{\rm b}(\boldsymbol{r}_{\rm c}); \mathrm{d}G_{\rm b}(\boldsymbol{r}_{\rm c})/\mathrm{d}(-r) > -\mathrm{d}V_{\rm b}(\boldsymbol{r}_{\rm c})/\mathrm{d}(-r)$
Borderline (BD-1)	$H_{\rm b}(\mathbf{r}_{\rm c}) > 0; \mathrm{d}H_{\rm b}(\mathbf{r}_{\rm c})/\mathrm{d}(-r) = 0$	$G_{\rm b}(\boldsymbol{r}_{\rm c}) > -V_{\rm b}(\boldsymbol{r}_{\rm c}); \mathrm{d}G_{\rm b}(\boldsymbol{r}_{\rm c})/\mathrm{d}(-r) = -\mathrm{d}V_{\rm b}(\boldsymbol{r}_{\rm c})/\mathrm{d}(-r)$
<i>t</i> -HB _{with no covalency}	$H_{\rm b}(\mathbf{r}_{\rm c}) > 0; \mathrm{d}H_{\rm b}(\mathbf{r}_{\rm c})/\mathrm{d}(-r) < 0$	$G_{\mathrm{b}}(\boldsymbol{r}_{\mathrm{c}}) > -V_{\mathrm{b}}(\boldsymbol{r}_{\mathrm{c}}); \mathrm{d}G_{\mathrm{b}}(\boldsymbol{r}_{\mathrm{c}}) < -\mathrm{d}V_{\mathrm{b}}(\boldsymbol{r}_{\mathrm{c}})$
Borderline (x-intercept)	$H_{\rm b}(\mathbf{r}_{\rm c}) = 0 \ (\theta_{\rm p}^{\rm a}) = 125^{\rm o})$	$G_{\rm b}(r_{\rm c}) = -V_{\rm b}(r_{\rm c}) \ (\theta_{\rm p}^{\rm a)} = 125^{\rm o})$
<i>t</i> -HB _{with covalency}	$H_{\rm b}(\mathbf{r}_{\rm c}) < 0; (125^{\rm o} <) \theta_{\rm p}^{\rm a)} < 150^{\rm o}$	$G_{\rm b}(r_{\rm c}) \le -V_{\rm b}(r_{\rm c}); (125^{\rm o} \le) \ \theta_{\rm p}^{\rm b)} \le 150^{\rm o}$
Borderline (Tentative)	$\theta_{\rm p}^{\rm a)} = 150^{o}$	$ heta_{ m p}^{ m b)} = 150^{o}$
CT-MC	$d(H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2)/d(-r) > 0;$	$\mathrm{d}G_{\mathrm{b}}(\boldsymbol{r}_{\mathrm{c}}) > \mathrm{d}V_{\mathrm{b}}(\boldsymbol{r}_{\mathrm{c}})/2;$
	$150^{\circ} < \theta_{p}^{a)} < 180^{\circ}$	$150^{\rm o} < \theta_{\rm p}^{\rm a)} < 180^{\rm o}$
Borderline (BD-2)	$d(H_b(r_c) - V_b(r_c)/2)/d(-r) = 0$	$2\mathrm{d}G_{\mathrm{b}}(\mathbf{r}_{\mathrm{c}})/\mathrm{d}(-r) = -\mathrm{d}V_{\mathrm{b}}(\mathbf{r}_{\mathrm{c}})/\mathrm{d}(-r)$
	$(H_{\rm b}(\boldsymbol{r}_{\rm c}) - V_{\rm b}(\boldsymbol{r}_{\rm c})/2 > 0; H_{\rm b}(\boldsymbol{r}_{\rm c}) < 0)$	$(-V_{\rm b}(\boldsymbol{r}_{\rm c})/2 < G_{\rm b}(\boldsymbol{r}_{\rm c}) < -V_{\rm b}(\boldsymbol{r}_{\rm c}))$
CT-TBP with X ₃ ⁻	$d(H_b(r_c) - V_b(r_c)/2)/d(-r) < 0$	$2\mathrm{d}G_{\mathrm{b}}(\mathbf{r}_{\mathrm{c}})/\mathrm{d}(-r) \leq -\mathrm{d}V_{\mathrm{b}}(\mathbf{r}_{\mathrm{c}})/\mathrm{d}(-r)$
	$(H_{\rm b}(r_{\rm c}) - V_{\rm b}(r_{\rm c})/2 > 0; H_{\rm b}(r_{\rm c}) < 0)$	$(-V_{\rm b}(\boldsymbol{r}_{\rm c})/2 < G_{\rm b}(\boldsymbol{r}_{\rm c}) < -V_{\rm b}(\boldsymbol{r}_{\rm c}))$
Borderline (y-intercept)	$H_{\rm b}(\mathbf{r}_{\rm c}) - V_{\rm b}(\mathbf{r}_{\rm c})/2 = 0 \ (H_{\rm b}(\mathbf{r}_{\rm c}) < 0)$	$G_{\rm b}(\boldsymbol{r}_{\rm c}) = -V_{\rm b}(\boldsymbol{r}_{\rm c})/2 \ (G_{\rm b}(\boldsymbol{r}_{\rm c}) < -V_{\rm b}(\boldsymbol{r}_{\rm c}))$
Cov-w	$H_{\rm b}(\mathbf{r}_{\rm c}) - V_{\rm b}(\mathbf{r}_{\rm c})/2 < 0; R^{\rm c} < 0.15 \ au$	$G_{\rm b}(\mathbf{r}_{\rm c}) \le -V_{\rm b}(\mathbf{r}_{\rm c})/2; R^{\rm c)} \le 0.15 \ au$
Borderline (Tentative)	$R^{\rm c)} = 0.15 \ au$	$R^{\rm d)} = 0.15 \ au$
Cov-s	$H_{\rm b}(\mathbf{r}_{\rm c}) - V_{\rm b}(\mathbf{r}_{\rm c})/2 < 0; R^{\rm c} > 0.15 \ au$	$G_{\rm b}(\mathbf{r}_{\rm c}) < -V_{\rm b}(\mathbf{r}_{\rm c})/2; R^{\rm d} > 0.15 au$

Table S1. Proposed definitions for the classification and characterization of interactions by the signs $H_b(\mathbf{r}_c)$ and $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$ and their first derivatives, together with the tentatively proposed definitions by the characteristic points on the plots of $H_b(\mathbf{r}_c)$ versus $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$. The tentatively proposed definitions are shown by italic. The requirements for the interactions are also shown.

a) $\theta_{\rm p} = 90^{\circ} - \tan^{-1} [dH_{\rm b}(\mathbf{r}_{\rm c})/d(H_{\rm b}(\mathbf{r}_{\rm c}) - V_{\rm b}(\mathbf{r}_{\rm c})/2)]$, $\theta_{\rm p} = 125^{\circ}$ is tentatively given for $\theta = 90^{\circ}$, where θ is defined by $90^{\circ} - \tan^{-1}[H_{\rm b}(\mathbf{r}_{\rm c})/(H_{\rm b}(\mathbf{r}_{\rm c}) - V_{\rm b}(\mathbf{r}_{\rm c})/2)]$ with $H_{\rm b}(\mathbf{r}_{\rm c}) = 0$. b) $\theta_{\rm p} = 90^{\circ} - \tan^{-1}[d(G_{\rm b}(\mathbf{r}_{\rm c}) + V_{\rm b}(\mathbf{r}_{\rm c}))/d(G_{\rm b}(\mathbf{r}_{\rm c}) + V_{\rm b}(\mathbf{r}_{\rm c})/2)]$, $\theta_{\rm p} = 125^{\circ}$ is tentatively given for $\theta = 90^{\circ}$, where θ is defined by $90^{\circ} - \tan^{-1}[d(G_{\rm b}(\mathbf{r}_{\rm c}) + V_{\rm b}(\mathbf{r}_{\rm c}))/d(G_{\rm b}(\mathbf{r}_{\rm c}) + V_{\rm b}(\mathbf{r}_{\rm c})/2)]$, $\theta_{\rm p} = 125^{\circ}$ is tentatively given for $\theta = 90^{\circ}$, where θ is defined by $90^{\circ} - \tan^{-1}[(G_{\rm b}(\mathbf{r}_{\rm c}) + V_{\rm b}(\mathbf{r}_{\rm c}))/(G_{\rm b}(\mathbf{r}_{\rm c}) + V_{\rm b}(\mathbf{r}_{\rm c})/2)]$ with $(G_{\rm b}(\mathbf{r}_{\rm c}) + V_{\rm b}(\mathbf{r}_{\rm c})) = 0]$. c) $R = [(H_{\rm b}(\mathbf{r}_{\rm c}) - V_{\rm b}(\mathbf{r}_{\rm c})/2)^2 + (H_{\rm b}(\mathbf{r}_{\rm c}))^2]^{1/2}$. d) $R = [(G_{\rm b}(\mathbf{r}_{\rm c}) + V_{\rm b}(\mathbf{r}_{\rm c})/2)^2 + (G_{\rm b}(\mathbf{r}_{\rm c}) + V_{\rm b}(\mathbf{r}_{\rm c}))^2]^{1/2}$.

_								
Compd	3a	3 b	3c	$\mathbf{3d}^k$	$3e-A^{k,l}$	$3e-B^{k,l}$	3f- A ^{<i>k</i>,<i>l</i>}	$\mathbf{3f}$ - $\mathbf{B}^{k,l}$
(Z, Z')	(O, S)	(O, Se)	(O, Te)	(S, Se)	(S, Te)	(S, Te)	(Se, Te)	(Se, Te)
Temp/K ^a	103(2)	103(2)	103(2)	103(2)	103(2)	103(2)	110(2)	110(2)
$r/\text{\AA}^b$	2.692(1)	2.723(2)	2.748(3)	3.030(1)	3.108(1)	3.076(1)	3.1920(3)	3.1526(3)
$\Delta r/\text{\AA}^{c,d}$	-0.63	-0.70	-0.83	-0.67	-0.75	-0.78	-0.77	-0.81
$ heta_{ m l}/^{\circ e}$	117.4(1)	118.2(2)	120.5(3)	103.2(2)	100.8(2)	103.7(2)	98.04(9)	100.49(9)
$ heta_2/^{\circ f}$	103.54(7)	101.4(1)	95.7(1)	99.6(1)	95.0(2)	95.5(1)	95.22(8)	95.77(8)
$\theta_3/^{\circ g}$	101.06(8)	98.6(2)	129.2(2)	90.2(1)	101.5(1)	95.4(1)	100.45(6)	95.05(6)
$\theta_{4}/^{\circ h}$	176.34(6)	176.4(1)	163.5(1)	164.6(1)	169.0(1)	169.9(1)	171.08(6)	171.95(6)
$\phi_1/^{\circ i}$	-107.4(2)	-105.9(3)	-176.8(3)	100.0(3)	-82.8(4)	-83.6(4)	82.4(2)	-83.7(2)
$\phi_2/^{\circ j}$	-176.0(1)	-174.7(2)	-177.4(3)	-152.7(3)) -161.6(3)	-165.3(3)	161.5(2)	-165.5(2)
Structure	AB	AB	BB	AB	AB	AB	AB	AB
Compd	1g- A ²	^m 1g-	B^m 1h	\mathbf{h} - \mathbf{A}^n	1h- B ^{<i>n</i>}	$1i-A^o$	1i- B ^o	
(Z, Z')	(0,0) (0,	O) (S	, S)	(S, S)	(Se, Se)	(Se, Se)	
Temp/K ^a	RT	R	Г І	RΤ	RT	103	103	
$r/Å^b$	2.543	3 2.5	47 2.	918	2.936	3.051(4)	3.064(4)	
$\Delta r/\text{\AA}^{c,d}$	-0.50) -0.	49 –().68	-0.66	-0.75	-0.74	
$\phi_1/^{\circ i}$	-179.8	85 –179	9.34 –1	43.2 -	-142.1 -	-154.1(3)	136.8(3)	
$\phi_2/^{\circ j}$	-179.8	85 –179	9.34 –1	58.3 -	-153.0 -	-138.8(3)	148.0(3)	
structure	BB	B	B (CC	CC	CC	CC	
Compd	2g- A	° 2g	$g-B^o$	$2\mathbf{h}^o$	2i -A ^{<i>p</i>}	2i -B ⁴	р	
(Z, Z')	(0,0) (C) , O)	(S, S)	(Se, Se)	(Se, S	e)	
Temp/K ^a	103	1	.03	RT	RT	RT		
$r/Å^b$	2.590(3) 2.6	04(3)	3.047(2)	3.091(1)) 3.048((1)	
$\Delta r/\text{\AA}^{c,d}$	-0.43	5 –().44	-0.55	-0.71	-0.73	5	
$\phi_1/^{\circ i}$	174.5(3) -17	4.8(3)	171.9(3)	122.4(7)) –133.0	(7)	
$\phi_2/^{\circ j}$	94.0(4	4) -93	3.8(4)	69.5(4)	141.8(6)) –143.2	(6)	
structure	AB	I	AB	AB	CC	CC		
Compd	$3\mathbf{g}^{o}$	3	$\mathbf{h}^{o,q}$	$\mathbf{3h}^{o,q}$	3i ^o	$3\mathbf{j}^r$		
(Z, Z')	(0,0) (S	5, S)	(S, S)	(Se, Se)	(Te, T	'e)	
Temp/K ^a	103 k	K I	RT	RT	103 K	RT		
$r/\text{\AA}^b$	2.616(9) 3.	004	3.021(2)	3.135(2)) 3.28	7	
$\Delta r/\text{\AA}^{c,d}$	-0.42	2 –().60	-0.58	-0.67	-0.8.	3	
$\phi_1/^{\circ i}$	169.28(13) -13	59.99 -	152.1(4)	-154.74(1	6) -124.	79	
$\phi_2/^{\circ j}$	-82.92(19) –9	5.25	101.7(4)	109.70(1	6) -132.4	46	
structure	AB	I	AB	AB	AB	CC		

Table S2. Nonbonded E---E' distances, angles and torsional angles around E and E', observed in 1–3.

^{*a*} Temperature for measurements. ^{*b*} r(E, E'). ^{*c*} $r(E, E') - \Sigma r_{vdW}(E/E')$. ^{*d*} Ref. 16 in the text. ^{*e*} $\angle C_1EC_{11}$. ^{*f*} $\angle C_9E'C_{12}$. ^{*g*} $\angle E'EC_{11}$. ^{*h*} $\angle EE'C_{12}$. ^{*i*} $\angle C_{10}C_1EC_{11}$. ^{*j*} $\angle C_{10}C_9E'C_{12}$. ^{*k*} Reexamined data in this work. ^{*l*} Ref. 20 in the text. ^{*m*} Ref. 35 in the text. ^{*n*} Ref. 36 in the text. ^{*o*} Ref. 18 in the text. ^{*p*} Refs. 15c and 37 in the text. ^{*q*} Ref. 38 in the text. ^{*r*} Ref. 39 in the text.

Species	$\phi_1{}^b$	ϕ_2^c	$\Delta E_{\mathrm{ES}}{}^{d,e}$	$\Delta E_{\mathrm{ZP}}{}^{d,e}$	Sym-
(Ē)	(°)	(°)	(kJ mol ⁻¹)	$(kJ mol^{-1})$	metry
4 A (O)	90.0 ^f	-178.4	9.6	8.0	C_1
4A (S)	77.7	-177.3	-0.7	-0.9	C_1
4 A (Se)	76.2	-177.0	-3.4	-3.6	C_1
4A (Te)	71.9	-176.5	-3.7	-3.5	C_1
5 A (O)	73.9	-176.4	-1.4	-3.1	C_1
5 A (S)	65.7	-179.6	-5.4	-6.2	C_1
5 A (Se)	63.9	-178.8	-5.7	-6.1	C_1
5A (Te)	60.5	-177.8	-4.1	-4.1	C_1
4B (O)	-179.3	-178.0	0.0	0.0	C_1
4B (S)	-179.1	-178.4	0.0	0.0	C_1
4B (Se)	-178.9	-178.3	0.0	0.0	C_1
4B (Te)	-180.0 ^f	-180.0 ^f	0.0	0.0	C_1
5B (O)	-157.0	-179.1	0.0	0.0	C_1
5B (S)	-170.4	-177.1	0.0	0.0	C_1
5B (Se)	-167.0	-177.0	0.0	0.0	C_1
5B (Te)	-177.8	-178.3	0.0	0.0	C_1

Table S3. Torsional angles around E for optimized structures on 4 and 5 with MP2/BSS-A^a

^{*a*} See text for BSS-A. ^{*b*} ϕ (C₁₀C₁EC_{Me} or C₁₀C₁EC_{Ph}). ^{*c*} ϕ (C₅C₁₀C₁E). ^{*d*} ΔE_{ES} and ΔE_{ZP} correspond to those on the energy surface and corrected with the zero-point energies, respectively. ^{*e*} $\Delta E(n: E) = E(nA: E) - E(nB: E)$: n = 4 and 5. ^{*f*} Fixed.

Species	$\phi_1{}^b$	$\phi_2{}^c$	$\Delta E_{\mathrm{ES}}{}^{d,e}$	$\Delta E_{\rm ZP}{}^{d,e}$	Sym-
(type)	(°)	(°)	(kJ mol ⁻¹)	(kJ mol ⁻¹)	metry
1a (AA)	83.7	65.7	3.2	-0.1	C_1
1a (AB)	-95.5	-179.5	1.0	-1.0	C_1
1a (BB)	179.1	-177.2	0.0	0.0	C_1
1a (BA)	174.9	70.8	7.1	6.5	C_1
1b (AA)	86.1	63.36	8.1	5.2	C_1
1b (AB)	-102.6	178.6	2.0	0.4	C_1
1b (BB)	-175.7	173.7	0.0	0.0	C_1
1b (BA)	173.8	70.5	11.1	10.5	C_1
1c (AA)	95.5	56.3	15.8	13.5	C_1
1c (AB)	-90.0	-171.3	5.5	4.1	C_1
1c (BB)	168.4	-170.5	0.0	0.0	C_1
1c (BA)	161.9	77.4	15.5	14.8	C_1
1d (AA)	60.6	55.7	-9.1	-7.1	C_1
1d (AB)	-70.4	-163.1	-15.3	-11.9	C_1
1d (BB)	180.0	180.0	0.0	0.0	C_1
1d (BA)	163.5	63.3	-8.5	-6.4	C_1
1e (AA)	62.7	47.3	-7.9	-5.0	C_1
1e (AB)	-74.9	-159.6	-23.3	-18.8	C_1
1e (BB)	180.0	180.0	0.0	0.0	$C_{ m s}$
1e (BA)	162.2	52.8	-2.6	0.5	C_1
1f (AA)	56.4	45.5	-10.9	-7.5	C_1
1f (AB)	-69.8	-154.3	-26.8	-21.9	C_1
1f (BB)	180.0	180.0	0.0	0.0	$C_{ m s}$
1f (BA)	-138.6	103.7	-12.4	-7.1	C_1
2'b (AA)	77.5	81.9	-3.2	-4.9	C_1
2'b (AB)	81.5	175.5	0.1	-0.5	C_1
2'b (BB)	179.5	-179.5	0.0	0.0	C_1

Table S4. Torsional Angles around E for optimized structures on 1a-1f and 2'b with MP2/BSS-A.^a

^{*a*} See text for BSS-A. ^{*b*} ϕ (C₈C₁EC_{Me}). ^{*c*} ϕ (C₁C₈E'C_{Me'}). ^{*d*} ΔE_{ES} and ΔE_{ZP} correspond to those on the energy surface and corrected with the zero-point energies, respectively. ^{*e*} $\Delta E(n: XX') = E(n: XX') - E(n: BB)$: n = 1a-1f and 2'b.

Species (type)	E-*-E'	$r_{\rm BP}^{b}$	$R_{\rm SL}^{c}$	$\Delta r_{\rm BP}^{d}$
1 (DD)	0.0	(A)	(A)	(A)
1a (BB)	0-*-5	2.64153	2.62/95	0.01358
la (AA)	0-*-5	2.96195	2.95247	0.00948
la (AB)	O-*-S	2.70495	2.69377	0.01118
1a (BA)	O-*-S	2.87566	2.86291	0.01275
1b (BB)	O-*-Se	2.66137	2.65626	0.00511
1b (AA)	O-*-Se	3.01172	3.00651	0.00521
1b (AB)	O-*-Se	2.70840	2.70517	0.00323
1b (BA)	O-*-Se	2.92737	2.91943	0.00794
1c (BB)	O-*-Te	2.72796	2.72410	0.00386
1c (AA)	O-*-Te	3.08634	3.08020	0.00614
1c (AB)	O-*-Te	2.80626	2.80420	0.00206
1c (BA)	O-*-Te	3.01998	3.01051	0.00947
1d (BB)	S-*-Se	2.95603	2.93905	0.01698
1d (AA)	S-*-Se	3.27781	3.26455	0.01326
1d (AB)	S-*-Se	3.01432	3.00654	0.00778
1d (BA)	S-*-Te	3.10272	3.08713	0.01559
1e (BB)	S-*-Te	3.07121	3.05660	0.01461
1e (AA)	S-*-Te	3.37229	3.35937	0.01292
1e (AB)	S-*-Te	3.06535	3.06047	0.00488
1e (BA)	S-*-Te	3.26176	3.24398	0.01778
1f (BB)	Se-*-Te	3.14252	3.13246	0.01006
1f (AA)	Se-*-Te	3.45650	3.44676	0.00974
1f (AB)	Se-*-Te	3.15972	3.15555	0.00417
1f (BA)	Se-*-Te	3.27665	3.26623	0.01042
1g (BB)	O-*-O	2.53244	2.52350	0.00894
1g (AA)	O-*-O	2.74698	2.74484	0.00214
1g (AB)	O-*-O	2.64343	2.63823	0.00520
1h (BB)	S-*-S	2.91108	2.88580	0.02528
1h (AA)	S-*-S	3.21554	3.19939	0.01615
1h (AB)	S-*-S	3.00800	2.98954	0.01846
1h (CC)	S-*-S	2.94729	2.91663	0.03066
1i (BB)	Se-*-Se	3.00925	2.99860	0.01065
1i (AA)	Se-*-Se	3.34888	3.33968	0.00920
1i (AB)	Se-*-Se	3.10504	3.09855	0.00649
	Se-*-Se	3.05914	3.04497	0.01417
1i (BB)	Te-*-Te	3.29066	3.28086	0.00980
	Te-*-Te	3.59016	3.57772	0.01244
1i (AB)	Te-*-Te	3.34154	3.33604	0.00550
1i (CC)	Te-*-Te	3.31352	3.30057	0.01295
2'b (BB)	O-*-Se	2.65331	2.64871	0.00460
2'b (AA)	0-*-Se	3.01423	3.00819	0.00604
2'b (AB)	O-*-Se	2.72082	2.71760	0.00322

Table S5. Lengths of bond paths (BPs: r_{BP}) and the corresponding straight-line distances (R_{SL}) for E-*-E' interactions in **1a–1j** and **2'b** evaluated with MP2/BSS-A, together with the differences between them ($\Delta r_{BP} = r_{BP} - R_{SL}$)^{*a*}

^{*a*} With the MP2/6-311++G(3df,3pd) for MP2/BSS-A method of the Gaussian 09 program. ^{*b*} The length of BPs. ^{*c*} Straight-line distances. ^{*d*} $\Delta r_{BP} = r_{BP} - R_{SL}$.

Figure S3. Molecular graphs, drawn on the optimized structures, for the conformers in **1a** (**AA**)–**1c** (**BA**), calculated with MP2/BSS-A.

Figure S4. Molecular graphs, drawn on the optimized structures, for the conformers in 1d (AA)–1f (BA), calculated with MP2/BSS-A.

Figure S5. Molecular graphs, drawn on the optimized structures, for the conformers in 1g (AB)–1j (AB) and 2'b (AB), calculated with MP2/BSS-A.

Figure S5. Plot of ΔE_{ZP} versus ΔE_{ES} for **1a–1j** and **2'b**, evaluated with MP2/BSS-A. Data are collected in Table S4 of the Supporting Information.

Figure S6. Plot of r_{BP} versus R_{SL} for **1a–1j** and **2'b** evaluated with MP2/BSS-A. Data are collected in Table S5 of the Supporting Information.

Figure S8. ¹³C NMR spectrum of 3a (O, S).

Figure S10. ¹³C NMR spectrum of 3b (O, Se).

Figure S12. ¹H NMR spectrum of 3c (O, Te).

Figure S14. ¹²⁵Te NMR spectrum of 3c (O, Te).

References

- S1 (a) Atoms in Molecules. A Quantum Theory: eds. R. F. W. Bader, Oxford University Press, Oxford, UK, 1990; (b) C. F. Matta, R. J. Boyd, An Introduction to the Quantum Theory of Atoms in Molecules in The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design: eds. C. F. Matta, R. J. Boyd, WILEY-VCH, Weinheim, Germany, 2007, Chapter 1.
- (a) R. F. W. Bader, T. S. Slee. D. Cremer, E. Kraka, J. Am. Chem. Soc. 1983, 105, 5061–5068;
 (b) R. F. W. Bader, Chem. Rev. 1991, 91, 893–926; (c) R. F. W. Bader, J. Phys. Chem. A 1998, 102, 7314–7323; (d) F. Biegler-König, R. F. W. Bader, T. H. Tang, J. Comput. Chem. 1982, 3, 317–328; (e) R. F. W. Bader, Acc. Chem. Res. 1985, 18, 9–15; (f) T. H. Tang, R. F. W. Bader, P. MacDougall, Inorg. Chem. 1985, 24, 2047–2053; (g) F. Biegler-König, J. Schönbohm, D. Bayles, J. Comput. Chem. 2001, 22, 545–559; (h) F. Biegler-König, J. Schönbohm, J. Comput. Chem. 2002, 23, 1489–1494.
- S3 W. Nakanishi, T. Nakamoto, S. Hayashi, T. Sasamori, N. Tokitoh, *Chem. Eur. J.* 2007, 13, 255–268.
- S4 (a) W. Nakanishi, S. Hayashi, K. Narahara, J. Phys. Chem. A 2009, 113, 10050–10057; (b) W. Nakanishi, S. Hayashi, K. Narahara, J. Phys. Chem. A 2008, 112, 13593–13599.
- S5 W. Nakanishi, S. Hayashi, Curr. Org. Chem. 2010, 14, 181–197.
- S6 (a) W. Nakanishi, S. Hayashi, J. Phys. Chem. A 2010, 114, 7423–7430; (b) W. Nakanishi, S. Hayashi, K. Matsuiwa, M. Kitamoto, Bull. Chem. Soc. Jpn 2012, 85, 1293–1305.
- S7 W. Nakanishi, S. Hayashi, J. Phys. Chem. A 2013, 117, 1795–1803.
- S8 W. Nakanishi, S. Hayashi, Int. J. Quantum Chem. 2018, 118, e25590.

Optimized structures given by Cartesian coordinates

Calculations were performed employing the Gaussian 09 program package. The basis sets of the (6211/311/21/2+1s1p), (63211/6111/31/2 + 1s1p1d1f), (743211/74111/721/2 + 1s1p1d1f), and (7433111/743111/7411/2 + 1s1p1d1f) types were employed for O, S, Se, and Te, respectively, implemented from Sapporo Basis Set Factory, with the 6-311G(d) basis set for C and H. The basis set system is called BSS-A, here. The Møller-Plesset second order energy correlation (MP2) level was applied to the calculations for **1a–1j** and **2'b**.

Addu	ıct	1a (BB)		
Sym	netry	C_1		
energ	ςγ Σ	MP2 = -935.88	32345 au	
Stand	lard orie	entation		
6	0	0.38519	-0.31967	0.01800
6	0	1.14629	-1.54296	-0.01934
6	0	1.13141	0.90596	-0.00996
6	0	2.56685	-1.50437	0.02690
6	0	-1.05551	-0.40109	-0.01213
6	0	0.47909	-2.79490	-0.00773
6	0	2.51868	0.91260	0.03556
6	0	3.23852	-0.30270	0.02415
6	0	-1.65603	-1.66106	-0.02096
6	0	-0.89711	-2.84951	-0.03388
1	0	3.06491	1.84904	0.02283
1	0	4.32513	-0.27850	0.05704
1	0	3.11459	-2.44425	0.01255
1	0	-2.73510	-1.75229	-0.03900
1	0	-1.41216	-3.80757	-0.03438
1	0	1.07268	-3.70681	-0.01927
8	0	0.38404	2.04447	-0.02608
6	0	1.05278	3.29775	-0.03414
1	0	0.26177	4.04582	-0.05426
1	0	1.65965	3.42436	0.86832
1	0	1.68320	3.40124	-0.92335
16	0	-2.05566	1.06830	0.00678
6	0	-3.73434	0.40707	0.04278
1	0	-4.37350	1.29381	0.07266
1	0	-3.97491	-0.16539	-0.85663
1	0	-3.92285	-0.19073	0.93814

Add	uct	1a (AA)		
Sym	metry	C_1		
energ	gy	MP2 = -935.88	20155 au	
Stan	dard orie	ntation		
6	0	0.43271	0.08046	-0.03964
6	0	1.78125	0.59616	0.05340
6	0	0.28086	-1.33894	0.08553
6	0	2.87417	-0.28297	0.27893
6	0	-0.63791	1.03305	-0.17131
6	0	2.02705	1.97832	-0.16292
6	0	1.36730	-2.16334	0.33565
6	0	2.66871	-1.63528	0.46249
6	0	-0.34216	2.38132	-0.36767
6	0	0.98611	2.85706	-0.38146
1	0	1.17909	-3.22969	0.43623
1	0	3.50715	-2.30017	0.65419
1	0	3.87568	0.13760	0.34500

1	0	-1.17212	3.07724	-0.46482
1	0	1.18003	3.91441	-0.54478
1	0	3.05348	2.33821	-0.11910
8	0	-0.94670	-1.94745	-0.06003
6	0	-1.27498	-2.19710	-1.43224
1	0	-2.27726	-2.62457	-1.43502
1	0	-1.27367	-1.26659	-2.00736
1	0	-0.55963	-2.90559	-1.86479
16	0	-2.36999	0.63869	-0.11662
6	0	-2.53588	0.07715	1.59832
1	0	-3.60459	-0.08691	1.76265
1	0	-1.99776	-0.85937	1.74683
1	0	-2.18023	0.85050	2.28265

Addu	ıct	1a (AB)					
Sym	metry	C_1	C_1				
energ	gy	MP2 = -935.88	MP2 = -935.8828581 au				
Stan	dard orie	ntation					
6	0	0.47897	0.19086	-0.05519			
6	0	1.45943	1.24789	0.01413			
6	0	0.97635	-1.13659	-0.22999			
6	0	2.84426	0.93752	-0.04520			
6	0	-0.91918	0.54300	-0.03407			
6	0	1.04075	2.58810	0.22318			
6	0	2.33324	-1.40359	-0.31434			
6	0	3.27713	-0.35831	-0.24454			
6	0	-1.27386	1.87628	0.16774			
6	0	-0.30145	2.89327	0.28693			
1	0	3.56172	1.75342	0.01793			
1	0	2.64440	-2.43399	-0.46957			
1	0	4.33918	-0.58123	-0.30978			
1	0	1.79309	3.37141	0.29074			
1	0	-2.31721	2.16657	0.20362			
1	0	-0.62582	3.91920	0.44605			
8	0	0.09460	-2.19455	-0.30256			
6	0	-0.09126	-2.84298	0.96235			
1	0	-0.84241	-3.61635	0.80313			
1	0	0.84799	-3.29331	1.30071			
1	0	-0.45075	-2.12815	1.70978			
16	0	-2.15224	-0.70883	-0.27500			
6	0	-3.69085	0.22895	-0.17710			
1	0	-4.47533	-0.51698	-0.33089			
1	0	-3.83442	0.69053	0.80315			
1	0	-3.76247	0.98011	-0.96774			

Addu	ıct	1a (BA)		
Sym	metry	C_1		
energ	gy	MP2 = -935.88	305502 au	
Stand	fard orie	ntation		
6	0	-0.4607	-0.06955	-0.05958
6	0	-1.8840	-0.29668	0.04726
6	0	-0.0300	1.30373	-0.09151
6	0	-2.7788	0.78951	0.24705
6	0	0.3881	-1.22207	-0.22183
6	0	-2.4003	-1.61895	0.02170
6	0	-0.9324	2.34192	0.10950

6	0	-2.3133	2.08453	0.25179
6	0	-0.1776	-2.49769	-0.25832
6	0	-1.5687	-2.70315	-0.16379
1	0	-0.5930	3.37130	0.09787
1	0	-2.9971	2.91635	0.40267
1	0	-3.8424	0.58148	0.34092
1	0	0.4932	-3.34614	-0.36809
1	0	-1.9712	-3.71281	-0.19363
1	0	-3.4762	-1.75689	0.11260
8	0	1.3018	1.52268	-0.27214
6	0	1.7501	2.86319	-0.41898
1	0	2.8163	2.78691	-0.62765
1	0	1.2445	3.35827	-1.25442
1	0	1.5951	3.43887	0.50005
16	0	2.1609	-1.20579	-0.38888
6	0	2.6482	-0.73758	1.29233
1	0	3.7406	-0.78463	1.32319
1	0	2.3214	0.27906	1.51512
1	0	2.2366	-1.44387	2.01696

Addı	ıct	1b (BB)				
Sym	metry	C_1				
energ	gy	MP2 = -2938.2	MP2 = -2938.2530693 au			
Stand	lard orie	entation				
6	0	0.81885	0.30961	0.00484		
6	0	1.85774	1.30775	-0.01377		
6	0	1.23822	-1.06070	-0.02843		
6	0	3.22269	0.91750	0.06765		
6	0	-0.55401	0.73643	-0.04481		
6	0	1.51322	2.68367	-0.01355		
6	0	2.57682	-1.41485	0.05372		
6	0	3.57449	-0.41392	0.07617		
6	0	-0.83433	2.10176	-0.06906		
6	0	0.19137	3.07036	-0.07502		
1	0	2.87363	-2.45771	0.03845		
1	0	4.61997	-0.70640	0.13745		
1	0	3.98758	1.69122	0.07225		
1	0	-1.85985	2.44954	-0.11114		
1	0	-0.07446	4.12507	-0.08935		
1	0	2.30977	3.42516	-0.01196		
8	0	0.22651	-1.97065	-0.10078		
6	0	0.54596	-3.35448	-0.04535		
1	0	-0.41055	-3.87325	-0.08852		
1	0	1.16496	-3.64821	-0.89915		
1	0	1.06011	-3.59852	0.88973		
34	0	-1.99848	-0.52380	0.00750		
6	0	-3.50328	0.69819	0.11843		
1	0	-4.37648	0.04625	0.20401		
1	0	-3.44116	1.32831	1.00739		
1	0	-3.60357	1.30504	-0.78299		

Adduct	1b (AA)			
Symmetry	C_1			
energy	MP2 = -2	2938.2499982	au	
Standard orient	tation			
6	0	0.802781	0.109647	-0.037294
6	0	2.073892	0.794884	0.062549

6	0	0.837878	-1.317859	0.080304
6	0	3.272278	0.062370	0.275756
6	0	-0.381470	0.915500	-0.155617
6	0	2.138423	2.198600	-0.142447
6	0	2.022218	-1.997525	0.319669
6	0	3.244896	-1.306679	0.447607
6	0	-0.264474	2.292264	-0.339241
6	0	0.991098	2.936757	-0.346829
1	0	1.973748	-3.079877	0.414051
1	0	4.163204	-1.858821	0.631091
1	0	4.210890	0.608862	0.344448
1	0	-1.174182	2.882138	-0.422539
1	0	1.045218	4.011943	-0.500062
1	0	3.109370	2.688525	-0.094360
8	0	-0.303577	-2.075123	-0.068634
6	0	-0.567364	-2.400693	-1.439011
1	0	-1.514871	-2.938440	-1.450242
1	0	-0.656282	-1.492214	-2.042493
1	0	0.234201	-3.034449	-1.834463
34	0	-2.184828	0.269904	-0.097710
6	0	-2.181793	-0.413219	1.722665
1	0	-3.213091	-0.698292	1.944653
1	0	-1.531278	-1.284361	1.785953
1	0	-1.864317	0.374944	2.406515

Adduct	1b (AB))		
Symmetry	C_1			
energy	MP2 = -	-2938.252293	7 au	
Standard orien	tation			
6	0	0.857782	0.211942	-0.034513
6	0	1.968853	1.132344	0.006139
6	0	1.172451	-1.169517	-0.203526
6	0	3.299592	0.639627	-0.054874
6	0	-0.479474	0.738516	0.000547
6	0	1.727239	2.517805	0.197122
6	0	2.479873	-1.618372	-0.289651
6	0	3.553958	-0.705594	-0.235852
6	0	-0.661028	2.107386	0.180842
6	0	0.435262	2.994356	0.263910
1	0	4.120380	1.352874	-0.009522
1	0	2.654509	-2.680780	-0.442273
1	0	4.576494	-1.068674	-0.302896
1	0	2.574102	3.199825	0.242189
1	0	-1.659193	2.528288	0.221683
1	0	0.247806	4.056358	0.406229
8	0	0.143011	-2.086169	-0.269833
6	0	-0.033608	-2.816115	0.952945
1	0	0.847328	-3.430686	1.163019
1	0	-0.212704	-2.125173	1.783114
1	0	-0.906946	-3.451254	0.806728
34	0	-1.988754	-0.422765	-0.188690
6	0	-3.424144	0.872809	-0.008684
1	0	-3.407684	1.360546	0.967545
1	0	-3.402116	1.609936	-0.813154
1	0	-4.338957	0.280987	-0.094953

Adduct	1b (BA)			
Symmetry	C_1	,			
energy	MP2	2 = -2938.248829	96 au		
Standard or	ientation				
6	0	-0.798236	-0.199792	-0.022995	
6	0	-2.046120	-0.926652	0.041759	
6	0	-0.894402	1.235361	-0.066306	
6	0	-3.281665	-0.236676	0.175307	
6	0	0.414927	-0.964469	-0.139130	
6	0	-2.044752	-2.346058	0.049134	
6	0	-2.119385	1.878454	0.064820	
6	0	-3.318559	1.138925	0.156212	
6	0	0.355421	-2.358897	-0.140076	
6	0	-0.868622	-3.055177	-0.072190	
1	0	-2.173416	2.960986	0.044309	
1	0	-4.263941	1.667103	0.254203	
1	0	-4.200454	-0.815823	0.237912	
1	0	1.288358	-2.912642	-0.208109	
1	0	-0.873941	-4.142588	-0.073664	
1	0	-2.999604	-2.865210	0.110513	
8	0	0.277682	1.918087	-0.178710	
6	0	0.224477	3.326399	-0.360951	
1	0	1.257467	3.633459	-0.519299	
1	0	-0.377374	3.586950	-1.237573	
1	0	-0.177249	3.828610	0.525831	
34	0	2.200234	-0.275387	-0.303287	
6	0	2.398965	0.416695	1.503421	
1	0	3.432793	0.759066	1.595341	
1	0	1.713777	1.250325	1.653793	
1	0	2.211892	-0.380455	2.224133	

Adduct	1c ((BB)		
Symmetry	C_1			
energy	MP	2 = -7150.06973	29 au	
Standard ori	entatior	1		
6	0	-1.183603	0.296027	-0.016767
6	0	-2.318181	1.182375	-0.006690
6	0	-1.459038	-1.107591	-0.060622
6	0	-3.632070	0.650779	0.109146
6	0	0.139812	0.846550	-0.082059
6	0	-2.107321	2.584871	-0.009732
6	0	-2.747137	-1.604979	0.056456
6	0	-3.841446	-0.711241	0.121509
6	0	0.286605	2.233254	-0.110715
6	0	-0.829249	3.097567	-0.099746
1	0	-2.932834	-2.673400	0.031657
1	0	-4.848619	-1.111079	0.210773
1	0	-4.474463	1.338794	0.139486
1	0	1.274440	2.678182	-0.168391
1	0	-0.668719	4.173352	-0.119446
1	0	-2.970709	3.247215	0.012668
8	0	-0.355440	-1.899386	-0.199093
6	0	-0.487277	-3.303251	-0.004205
1	0	0.526188	-3.699474	-0.053734
1	0	-0.926162	-3.517100	0.975135
1	0	-1.096720	-3.749950	-0.795526
52	0	1.881079	-0.357215	0.001947
6	0	3.270430	1.260242	0.195986

1	0	4.248591	0.790923	0.331853
1	0	3.301361	1.877802	-0.702735
1	0	3.045890	1.867387	1.074410

Addı	ıct	1c (AA)				
Sym	metry	C_1				
energ	gy	MP2 = -7150.0	MP2 = -7150.0637292 au			
Stand	dard orie	entation				
6	0	1.14909	0.13221	0.00241		
6	0	2.42231	0.81951	0.04409		
6	0	1.20386	-1.29733	0.05205		
6	0	3.62065	0.09774	0.29243		
6	0	-0.04395	0.91793	-0.15228		
6	0	2.46870	2.23196	-0.08711		
6	0	2.38674	-1.97286	0.30716		
6	0	3.60877	-1.27703	0.41354		
6	0	0.06422	2.30375	-0.28714		
6	0	1.31488	2.95836	-0.29691		
1	0	2.34994	-3.05767	0.37595		
1	0	4.52820	-1.82175	0.61298		
1	0	4.55837	0.64786	0.34289		
1	0	-0.84409	2.89566	-0.37279		
1	0	1.35511	4.03973	-0.40504		
1	0	3.43683	2.72853	-0.05073		
8	0	0.05613	-2.04631	-0.09441		
6	0	-0.13692	-2.48663	-1.44582		
1	0	-1.10033	-2.99464	-1.46731		
1	0	-0.15896	-1.63031	-2.12707		
1	0	0.66405	-3.17427	-1.73724		
52	0	-2.04148	0.20928	-0.09503		
6	0	-1.93773	-0.69783	1.83597		
1	0	-2.96084	-0.92764	2.14257		
1	0	-1.34428	-1.60837	1.77411		
1	0	-1.50002	0.01248	2.53830		

Add	uct	1c (AB)					
Sym	metry	C_1					
ener	gy	MP2 = -7150.0	MP2 = -7150.0676492 au				
Stan	dard orie	ntation					
6	0	1.19135	0.20525	0.01391			
6	0	2.34687	1.06614	-0.02996			
6	0	1.41406	-1.18926	-0.18042			
6	0	3.63453	0.50699	-0.24851			
6	0	-0.11261	0.78947	0.12967			
6	0	2.18885	2.45283	0.22788			
6	0	2.67474	-1.70524	-0.42347			
6	0	3.79167	-0.84384	-0.49319			
6	0	-0.21395	2.15589	0.38363			
6	0	0.93083	2.98341	0.43135			
1	0	4.49498	1.17313	-0.27233			
1	0	2.77785	-2.77764	-0.57141			
1	0	4.77949	-1.25594	-0.68361			
1	0	3.06713	3.09568	0.21849			
1	0	-1.18682	2.62130	0.50567			
1	0	0.81048	4.04508	0.63582			
8	0	0.35131	-2.06347	-0.03097			
6	0	0.23605	-2.53348	1.32513			
1	0	-0.66652	-3.14236	1.36233			

1	0	1.11293	-3.13473	1.58501
1	0	0.14510	-1.68820	2.01426
52	0	-1.86412	-0.35207	-0.19377
6	0	-3.21581	1.30744	-0.14244
1	0	-4.19963	0.89316	-0.37837
1	0	-3.25678	1.76518	0.84682
1	0	-2.95402	2.04728	-0.90049

Addu	ıct	1c (BA)					
Symmetry		C_1	C_1				
energy		MP2 = -7150.0	MP2 = -7150.063828 au				
Stand	lard orie	entation					
6	0	-1.17557	-0.18621	0.01366			
6	0	-2.43471	-0.89024	0.07972			
6	0	-1.24369	1.24770	0.03392			
6	0	-3.66337	-0.17898	0.00904			
6	0	0.04016	-0.95464	0.01823			
6	0	-2.45016	-2.30922	0.10866			
6	0	-2.45774	1.91656	-0.04714			
6	0	-3.67315	1.19749	-0.04135			
6	0	-0.03889	-2.34956	0.07074			
6	0	-1.27422	-3.02860	0.13914			
1	0	-2.48508	3.00093	-0.03987			
1	0	-4.61351	1.74026	-0.09925			
1	0	-4.59553	-0.73915	0.03995			
1	0	0.88321	-2.92530	0.07011			
1	0	-1.29074	-4.11535	0.17653			
1	0	-3.41162	-2.81878	0.14365			
8	0	-0.05216	1.89958	0.11923			
6	0	-0.00443	3.27416	-0.24348			
1	0	1.05522	3.52416	-0.29055			
1	0	-0.46619	3.43315	-1.22287			
1	0	-0.49699	3.90127	0.50689			
52	0	2.01438	-0.24589	-0.31615			
6	0	2.34892	0.63709	1.60185			
1	0	3.40226	0.92391	1.64991			
1	0	1.71030	1.51113	1.71654			
1	0	2.13909	-0.10006	2.37739			

Addu	uct	1d (BB)		
Sym	metry	C_1		
energ	gy	MP2 = -3260.8	3289424 au	
Stan	dard orie	ntation		
6	0	0.63950	0.64519	-0.00002
6	0	1.37183	1.89862	0.00000
6	0	1.43783	-0.56175	-0.00004
6	0	2.79151	1.91964	0.00000
6	0	0.80399	0.73616	-0.00001
6	0	0.69107	3.14329	0.00002
6	0	2.83125	-0.48539	-0.00004
6	0	3.51095	0.74746	-0.00002
6	0	1.41940	1.98875	0.00000
6	0	0.68378	3.18884	0.00002
1	0	3.42524	-1.39104	-0.00007
1	0	4.59837	0.76029	-0.00003
1	0	3.29642	2.88346	0.00001

1	0	2.49952	2.06410	0.00000
1	0	1.21065	4.14030	0.00003
1	0	1.27978	4.05838	0.00003
16	0	0.65990	-2.15264	-0.00008
6	0	2.03829	-3.31645	0.00004
1	0	1.56177	-4.30033	-0.00030
1	0	2.65152	-3.21919	-0.89934
1	0	2.65103	-3.21958	0.89980
34	0	1.95292	-0.80685	0.00000
6	0	3.70333	0.03604	0.00018
1	0	4.39993	-0.80643	0.00020
1	0	3.86167	0.63144	0.90103
1	0	3.86182	0.63153	-0.90059

Addu	ict	1d (AA)		
Sym	netry	C_1		
energ	уy	MP2 = -3260.8	324141 au	
Stand	lard orie	ntation		
6	0	-0.84416	0.15733	0.01462
6	0	-2.15486	0.77692	-0.02787
6	0	-0.80614	-1.27416	-0.13629
6	0	-3.29556	0.02295	-0.41164
6	0	0.27872	1.03601	0.20258
6	0	-2.31483	2.14500	0.31630
6	0	-1.95150	-1.97122	-0.52128
6	0	-3.18963	-1.32160	-0.70282
6	0	0.07203	2.37288	0.54307
6	0	-1.22298	2.92194	0.64443
1	0	-1.88290	-3.05224	-0.61912
1	0	-4.06270	-1.89362	-1.00729
1	0	-4.25948	0.52638	-0.46151
1	0	0.94049	3.01599	0.66582
1	0	-1.34787	3.96680	0.91822
1	0	-3.31579	2.57266	0.30238
16	0	0.60112	-2.29060	0.23045
6	0	0.80932	-1.93422	1.99294
1	0	1.58862	-2.61313	2.35070
1	0	1.13440	-0.90275	2.14680
1	0	-0.12167	-2.13296	2.52863
34	0	2.11498	0.58261	-0.10149
6	0	1.94931	0.00673	-1.94905
1	0	2.96692	-0.05963	-2.34198
1	0	1.46797	-0.97120	-1.99765
1	0	1.38636	0.75320	-2.51134

Addu	ct	1d (AB)		
Symn	netry	C_1		
energ	y	MP2 = -3260.8	347631 au	
Stand	ard orie	entation		
6	0	0.86497	0.32136	-0.04876
6	0	1.93414	1.29576	-0.00693
6	0	1.24757	-1.04481	-0.26462
6	0	3.26921	0.90439	-0.29407
6	0	0.48388	0.80100	0.10888
6	0	1.66514	2.64173	0.35423
6	0	2.56754	-1.38410	-0.55406
6	0	3.57948	-0.40363	-0.60696

6	0	0.69141	2.12331	0.50159
6	0	0.37406	3.04016	0.62540
1	0	4.04728	1.66553	-0.27229
1	0	2.80799	-2.43388	-0.70540
1	0	4.60261	-0.69011	-0.83769
1	0	1.69700	2.48634	0.68036
1	0	0.16361	4.06277	0.93045
1	0	2.48843	3.35242	0.39147
16	0	0.11315	-2.39152	-0.06311
6	0	0.05931	-2.35431	1.74398
1	0	0.90910	-2.52856	2.21863
1	0	0.48299	-1.40016	2.06615
1	0	0.74977	-3.16057	2.00698
34	0	2.01222	-0.28084	-0.32222
6	0	3.36328	1.12452	-0.41738
1	0	3.61491	1.52743	0.56511
1	0	3.05208	1.91889	-1.09863
1	0	4.24240	0.62047	-0.82795

Addı	ıct	1d (BA)		
Sym	netry	C_1		
energ	gy	MP2 = -3260.8	321648 au	
Stand	lard orie	ntation		
6	0	-0.70155	-0.48804	-0.08208
6	0	-1.80286	-1.42212	0.03461
6	0	-1.01723	0.91860	0.01433
6	0	-3.10360	-0.97136	0.38144
6	0	0.60381	-1.05677	-0.27041
6	0	-1.59940	-2.80453	-0.21841
6	0	-2.30085	1.30498	0.40500
6	0	-3.33618	0.36802	0.60196
6	0	0.75686	-2.42114	-0.51390
6	0	-0.34740	-3.29708	-0.52269
1	0	-2.53556	2.35504	0.53355
1	0	-4.32198	0.71816	0.89932
1	0	-3.90624	-1.70059	0.47141
1	0	1.76243	-2.81429	-0.64262
1	0	-0.20031	-4.35551	-0.72350
1	0	-2.45495	-3.47415	-0.14964
16	0	0.15796	2.15763	-0.47682
6	0	-0.88176	3.63208	-0.63602
1	0	-0.22267	4.37614	-1.09204
1	0	-1.73044	3.45103	-1.30079
1	0	-1.22318	4.01660	0.32807
34	0	2.24297	-0.08605	-0.09076
6	0	2.05252	0.33408	1.80124
1	0	2.98808	0.80742	2.10941
1	0	1.22419	1.02985	1.94493
1	0	1.89810	-0.58626	2.36626

Addu	ict	1e (BB)		
Sym	netry	$C_{\rm s}$		
energ	gy	MP2 = -7472.64	434694 au	
Stand	lard orien	itation		
6	0	-1.21721	0.19635	0.00000
6	0	-2.47267	0.92554	0.00000

6	0	-1.32213	-1.24483	0.00000
6	0	-3.71840	0.24307	0.00000
6	0	0.00000	0.97561	0.00000
6	0	-2.49070	2.34330	0.00000
6	0	-2.56827	-1.87052	0.00000
6	0	-3.76734	-1.13169	0.00000
6	0	-0.08435	2.37094	0.00000
6	0	-1.31375	3.05650	0.00000
1	0	-2.63519	-2.95196	0.00000
1	0	-4.72035	-1.65548	0.00000
1	0	-4.63298	0.83264	0.00000
1	0	0.81766	2.97079	0.00000
1	0	-1.32066	4.14416	0.00000
1	0	-3.45245	2.85252	0.00000
16	0	0.14715	-2.22434	0.00000
6	0	-0.44636	-3.92762	0.00000
1	0	0.46259	-4.53459	0.00000
1	0	-1.02420	-4.15072	0.90018
1	0	-1.02420	-4.15072	-0.90018
52	0	1.99546	0.21011	0.00000
6	0	3.02162	2.08874	0.00000
1	0	4.08237	1.82195	0.00000
1	0	2.80335	2.66639	-0.89949
1	0	2.80335	2.66639	0.89949

Adduct		1e (AA)		
Symme	try	C_1		
energy		MP2 = -7472.64	64814 au	
Standar	d orient	ation		
6	0	-1.15148	0.20822	0.01254
6	0	-2.40400	0.93557	-0.06940
6	0	-1.23895	-1.22282	-0.11837
6	0	-3.58889	0.28153	-0.50078
6	0	0.04028	0.97867	0.24542
6	0	-2.45469	2.31694	0.25118
6	0	-2.42285	-1.82416	-0.54383
6	0	-3.59261	-1.07106	-0.77385
6	0	-0.06594	2.33595	0.56168
6	0	-1.31160	2.99435	0.62285
1	0	-2.44456	-2.90818	-0.62979
1	0	-4.49969	-1.56640	-1.11144
1	0	-4.50357	0.86576	-0.58617
1	0	0.84367	2.91377	0.71059
1	0	-1.35221	4.04953	0.88257
1	0	-3.41383	2.82967	0.20345
16	0	0.06461	-2.33902	0.32233
6	0	0.18362	-2.00466	2.09773
1	0	0.92455	-2.70621	2.49124
1	0	0.52759	-0.98310	2.27696
1	0	-0.78145	-2.17989	2.57839
52	0	2.04190	0.34855	-0.06841
6	0	1.73878	-0.46842	-2.01679
1	0	2.70307	-0.45911	-2.53011
1	0	1.35725	-1.48735	-1.94056
1	0	1.03687	0.17035	-2.55556

Addu	ıct	1e (AB)		
Sym	metry	C_1		
energ	gy	MP2 = -7472.6	523368 au	
Stand	lard orie	entation		
6	0	1.18810	0.33302	-0.05095
6	0	2.29908	1.25868	-0.01379
6	0	1.51329	-1.04696	-0.26559
6	0	3.60209	0.82026	-0.37289
6	0	-0.13455	0.84254	0.18482
6	0	2.08231	2.62014	0.32232
6	0	2.80392	-1.44226	-0.60659
6	0	3.85280	-0.50198	-0.68181
6	0	-0.28376	2.17794	0.56276
6	0	0.81788	3.05554	0.65907
1	0	4.41273	1.54710	-0.36869
1	0	2.99757	-2.50051	-0.76678
1	0	4.85323	-0.82495	-0.95911
1	0	2.93202	3.29983	0.34611
1	0	-1.26855	2.57125	0.79117
1	0	0.65043	4.08966	0.95207
16	0	0.31726	-2.32719	-0.01108
6	0	0.31186	-2.34755	1.80534
1	0	-0.43972	-3.08179	2.10791
1	0	1.29450	-2.64449	2.17899
1	0	0.03147	-1.36409	2.19001
52	0	-1.91336	-0.24481	-0.24456
6	0	-3.18244	1.49309	-0.30515
1	0	-4.13438	1.13479	-0.70771
1	0	-3.36005	1.91565	0.68511
1	0	-2.77402	2.24774	-0.98018

Addu	ct	1e (BA)					
Symr	netry	C_1					
energ	y	MP2 = -7472.64	MP2 = -7472.6444515 au				
Stand	lard orie	entation					
6	0	-1.03388	-0.48997	-0.08396			
6	0	-2.14920	-1.40615	0.04857			
6	0	-1.33929	0.91931	0.00176			
6	0	-3.42836	-0.94047	0.45328			
6	0	0.26191	-1.07104	-0.30800			
6	0	-1.97393	-2.79042	-0.21053			
6	0	-2.60015	1.32552	0.44116			
6	0	-3.63897	0.40171	0.67863			
6	0	0.37962	-2.44029	-0.56237			
6	0	-0.74061	-3.29556	-0.56589			
1	0	-2.81800	2.38016	0.56414			
1	0	-4.60743	0.76252	1.01727			
1	0	-4.23785	-1.65937	0.56356			
1	0	1.37038	-2.86383	-0.70920			
1	0	-0.61351	-4.35466	-0.77699			
1	0	-2.83833	-3.44687	-0.12659			
16	0	-0.17737	2.13399	-0.56796			
6	0	-1.21452	3.60793	-0.74947			
1	0	-0.57098	4.32795	-1.26235			
1	0	-2.08905	3.40012	-1.37136			
1	0	-1.51554	4.03352	0.21059			
52	0	2.12372	-0.09248	-0.04716			
6	0	1.70581	0.53912	1.95371			

1	0	2.64789	0.87428	2.39426
1	0	0.98940	1.36150	1.93497
1	0	1.31700	-0.30823	2.51983

Addu	ıct	1f (BB)		
Symmetry $C_{\rm s}$				
energ	gy	MP2 = -9475.0	096778 au	
Stand	lard orie	entation		
6	0	-1.22715	0.48919	0.00000
6	0	-2.46835	1.24681	0.00000
6	0	-1.36515	-0.94805	0.00000
6	0	-3.72911	0.59408	0.00000
6	0	0.00000	1.25256	0.00000
6	0	-2.46045	2.66503	0.00000
6	0	-2.62615	-1.54218	0.00000
6	0	-3.80943	-0.77897	0.00000
6	0	-0.05614	2.64882	0.00000
6	0	-1.27198	3.35786	0.00000
1	0	-2.72069	-2.62140	0.00000
1	0	-4.77356	-1.28209	0.00000
1	0	-4.62955	1.20509	0.00000
1	0	0.85770	3.23065	0.00000
1	0	-1.25923	4.44543	0.00000
1	0	-3.41339	3.19055	0.00000
34	0	0.16204	-2.10142	0.00000
6	0	-0.67535	-3.85350	0.00000
1	0	0.16610	-4.55037	0.00000
1	0	-1.27078	-4.00396	0.90183
1	0	-1.27078	-4.00396	-0.90183
52	0	1.97820	0.45080	0.00000
6	0	3.04817	2.30398	0.00000
1	0	4.10222	2.01268	0.00000
1	0	2.84130	2.88500	-0.89989
1	0	2.84130	2.88500	0.89989

Addu	ıct	1f (AA)		
Sym	metry	C_1		
energ	gy	MP2 = -9475.0	138284 au	
Stand	lard orie	entation		
6	0	1.18564	0.41312	0.00535
6	0	2.46988	1.08943	0.04285
6	0	1.21311	-1.00780	0.22460
6	0	3.61969	0.42057	0.54009
6	0	0.03231	1.22213	-0.28359
6	0	2.58397	2.43935	-0.37906
6	0	2.36449	-1.62715	0.70860
6	0	3.56120	-0.90795	0.90821
6	0	0.19999	2.54537	-0.70053
6	0	1.47508	3.13722	-0.81206
1	0	2.35134	-2.70464	0.85625
1	0	4.44094	-1.41581	1.29603
1	0	4.55869	0.96901	0.59279
1	0	-0.68225	3.15326	-0.88940
1	0	1.56506	4.16653	-1.15108
1	0	3.56557	2.90991	-0.36339
34	0	-0.20257	-2.20664	-0.23471

6	0	-0.31530	-1.76187	-2.12235
1	0	-0.96708	-2.51270	-2.57580
1	0	-0.75127	-0.76912	-2.24948
1	0	0.67957	-1.81591	-2.56666
52	0	-1.98774	0.72033	0.12052
6	0	-1.66482	0.01418	2.10851
1	0	-2.60710	0.11872	2.65125
1	0	-1.35032	-1.03039	2.08982
1	0	-0.90470	0.64002	2.57922

Addu	ıct	1f (AB)			
Sym	netry	C_1			
energ	gy	MP2 = -9475.0198784 au			
Stand	lard orie	entation			
6	0	1.11843	0.66427	-0.05804	
6	0	2.15566	1.67332	-0.01647	
6	0	1.54925	-0.67961	-0.30554	
6	0	3.47705	1.35226	-0.42768	
6	0	-0.23270	1.06940	0.21741	
6	0	1.84599	3.00193	0.37476	
6	0	2.85618	-0.96182	-0.69258	
6	0	3.82251	0.06270	-0.77897	
6	0	-0.47131	2.37339	0.65452	
6	0	0.56368	3.32730	0.76351	
1	0	4.22753	2.14105	-0.42239	
1	0	3.13899	-1.99672	-0.87044	
1	0	4.83609	-0.17229	-1.09461	
1	0	2.64307	3.74259	0.40205	
1	0	-1.47805	2.68090	0.91732	
1	0	0.32804	4.33316	1.10406	
34	0	0.40890	-2.17512	0.01269	
6	0	0.42825	-2.03224	1.95682	
1	0	-0.21685	-2.82779	2.33695	
1	0	1.44749	-2.16469	2.32237	
1	0	0.02739	-1.06025	2.24977	
52	0	-1.94886	-0.09650	-0.26627	
6	0	-3.27294	1.59935	-0.39208	
1	0	-4.17909	1.21765	-0.87145	
1	0	-3.53818	1.99815	0.58832	
1	0	-2.83835	2.37852	-1.02151	

Addı	ict	1f (BA)		
Sym	metry	C_1		
energ	gy	MP2 = -9475.0	144161 au	
Stand	lard orie	ntation		
6	0	1.06422	0.75333	-0.02791
6	0	2.18683	1.66177	0.08890
6	0	1.37486	-0.63306	-0.24735
6	0	3.50393	1.22553	-0.21593
6	0	-0.25013	1.31055	0.13113
6	0	1.97339	3.01967	0.44431
6	0	2.67366	-1.00943	-0.58309
6	0	3.74021	-0.08584	-0.56846
6	0	-0.40625	2.65373	0.48005
6	0	0.70383	3.49790	0.69371
1	0	2.88557	-2.04854	-0.81745

1	0	4.74183	-0.41683	-0.83306
1	0	4.32259	1.93900	-0.14251
1	0	-1.41078	3.06231	0.56308
1	0	0.54824	4.53666	0.97518
1	0	2.83868	3.67427	0.53504
34	0	0.11603	-2.05328	0.05122
6	0	1.36718	-3.30648	0.89218
1	0	0.73977	-4.02689	1.42336
1	0	1.97160	-3.83486	0.15421
1	0	2.00114	-2.77273	1.60244
52	0	-2.03041	0.34789	-0.49232
6	0	-2.69318	-0.28991	1.43817
1	0	-3.72517	-0.63413	1.33570
1	0	-2.05128	-1.10093	1.78501
1	0	-2.65717	0.55735	2.12400

Add	uct	1g (BB)		
Sym	metry	C_1		
ener	gy	MP2 = -613.29	62322 au	
Stan	dard orie	ntation		
6	0	0.00000	-0.27520	-0.03342
6	0	0.00000	-1.71312	0.02358
6	0	1.27444	0.39127	0.00190
6	0	1.22772	-2.42826	0.00024
6	0	-1.27444	0.39127	0.00192
6	0	-1.22772	-2.42826	0.00025
6	0	2.45346	-0.34461	-0.02054
6	0	2.42859	-1.75636	0.00903
6	0	-2.45346	-0.34461	-0.02053
6	0	-2.42859	-1.75636	0.00904
1	0	1.20021	-3.51549	0.02533
1	0	-1.20021	-3.51549	0.02533
1	0	3.41352	0.15774	-0.00693
1	0	3.36760	-2.30474	-0.00529
1	0	-3.41352	0.15774	-0.00690
1	0	-3.36760	-2.30474	-0.00528
8	0	1.26175	1.75495	-0.00939
6	0	2.51179	2.42658	0.01448
1	0	3.08137	2.17845	0.91664
1	0	3.10868	2.19008	-0.87305
1	0	2.26710	3.48758	0.01716
8	0	-1.26175	1.75495	-0.00935
6	0	-2.51180	2.42658	0.01444
1	0	-3.10864	2.19005	-0.87311
1	0	-3.08141	2.17848	0.91659
1	0	-2.26711	3.48758	0.01710

Addu	ıct	1g (AA)		
Symmetry		$\overline{C_1}$		
energy		MP2 = -613.2974524 au		
Stand	lard orie	ntation		
6	0	-0.24841	0.00182	-0.03039
6	0	-1.69084	-0.01588	0.01896
6	0	0.42028	-1.26163	-0.11262
6	0	-2.38788	-1.23620	-0.19052
6	0	0.40242	1.26688	0.13098

6	0	-2.40742	1.20054	0.17781
6	0	-0.29264	-2.43025	-0.32257
6	0	-1.70415	-2.42504	-0.34753
6	0	-0.33152	2.42799	0.30963
6	0	-1.74183	2.39529	0.36540
1	0	-3.47606	-1.22386	-0.18062
1	0	-3.49494	1.16640	0.19969
1	0	0.26925	-3.35644	-0.41680
1	0	-2.24532	-3.35365	-0.51123
1	0	0.21593	3.35995	0.42854
1	0	-2.29812	3.31912	0.50349
8	0	1.79546	-1.35462	-0.08104
6	0	2.32199	-1.31122	1.25170
1	0	2.05844	-0.37248	1.74354
1	0	1.94518	-2.16230	1.82959
1	0	3.40511	-1.38075	1.15220
8	0	1.77513	1.38524	0.08303
6	0	2.28726	1.34417	-1.25497
1	0	2.05918	0.38763	-1.72956
1	0	1.86568	2.16927	-1.83962
1	0	3.36736	1.46333	-1.17044

Add	uct	1g (AB)			
Sym	metry	$\tilde{C_1}$			
ener	gy	MP2 = -613.2961814 au			
Stan	dard orie	ntation			
6	0	-0.25120	0.14213	-0.04278	
6	0	-1.17431	1.24696	0.03174	
6	0	1.15237	0.45148	-0.07012	
6	0	-0.68731	2.56960	0.21701	
6	0	-0.80614	-1.16503	-0.23396	
6	0	-2.57347	1.00562	0.00323	
6	0	1.59109	1.75642	0.11136	
6	0	0.66630	2.81941	0.22878	
6	0	-2.17871	-1.35472	-0.28278	
6	0	-3.07105	-0.26706	-0.18906	
1	0	-1.40209	3.38614	0.29377	
1	0	2.65031	1.98664	0.10552	
1	0	1.03760	3.83235	0.36502	
1	0	-3.24865	1.85570	0.07930	
1	0	-2.54068	-2.36867	-0.43511	
1	0	-4.14365	-0.44052	-0.22869	
8	0	2.00686	-0.60341	-0.21455	
6	0	3.39241	-0.31687	-0.34369	
1	0	3.79422	0.13429	0.56997	
1	0	3.58006	0.34573	-1.19485	
1	0	3.87081	-1.27965	-0.51603	
8	0	-0.01834	-2.28778	-0.36181	
6	0	0.42081	-2.80205	0.89662	
1	0	1.02272	-2.06499	1.43411	
1	0	-0.44227	-3.09370	1.50641	
1	0	1.02857	-3.67916	0.67339	

Adduct	1h (BB)
Symmetry	C_{2v}
energy	MP2 = -1258.4606397 au

Stand	lard orier	ntation		
6	0	0.00000	0.00000	0.59845
6	0	0.00000	0.00000	2.04919
6	0	0.00000	1.29661	-0.04785
6	0	0.00000	1.21512	2.78281
6	0	0.00000	-1.29661	-0.04785
6	0	0.00000	-1.21512	2.78281
6	0	0.00000	2.45982	0.72469
6	0	0.00000	2.42647	2.13177
6	0	0.00000	-2.45982	0.72469
6	0	0.00000	-2.42647	2.13177
1	0	0.00000	3.43030	0.24466
1	0	0.00000	3.35998	2.68970
1	0	0.00000	1.16603	3.86974
1	0	0.00000	-3.43030	0.24466
1	0	0.00000	-3.35998	2.68970
1	0	0.00000	-1.16603	3.86974
16	0	0.00000	1.44290	-1.81721
6	0	0.00000	3.22486	-2.10274
1	0	0.00000	3.32164	-3.19186
1	0	0.89930	3.70288	-1.70599
1	0	0.89930	3.70288	-1.70599
16	0	0.00000	-1.44290	-1.81721
6	0	0.00000	-3.22486	-2.10274
1	0	0.00000	-3.32164	-3.19186
1	0	0.89930	-3.70288	-1.70599
1	0	0.89930	-3.70288	-1.70599

Addu	ict	1h (AA)		
Sym	netry	C_2		
energ	gy	MP2 = -1258.4	643572 au	
Stand	lard orie	entation		
6	0	0.00000	0.00000	0.55681
6	0	0.00000	0.00000	2.00635
6	0	0.00000	1.28739	-0.08840
6	0	-0.19865	1.20802	2.72616
6	0	0.00000	-1.28739	-0.08840
6	0	0.19865	-1.20802	2.72616
6	0	-0.20565	2.44608	0.66118
6	0	-0.34672	2.40910	2.06353
6	Õ	0.20565	-2.44608	0.66118
6	Õ	0.34672	-2.40910	2.06353
1	Õ	-0.19392	3.40030	0.13947
Î.	Õ	-0.50955	3.33108	2.61637
1	Õ	-0.22125	1.16869	3.81377
1	Õ	0.19392	-3,40030	0.13947
1	ŏ	0.50955	-3.33108	2.61637
1	ŏ	0 22125	-1 16869	3 81377
16	ŏ	0 33411	1.10009	-1 81019
6	ŏ	2 02149	0.91918	-1 92584
1	ŏ	2:02119	1 17667	-2 92746
1	ŏ	2.57712	1 39886	-1 17941
1	Ő	2.03002	-0.16660	-1 80897
16	Ő	-0.33411	-1 56442	-1 81019
6	0	-2 02149	-0.91918	-1 92584
1	0	-2.02147 -2.37742	-0.91910 -1.17667	-2.02746
1	0	-2.57742	-1.17007	-2.727+0 -1.170/11
1	0	-2.03002	0 16660	-1.17741
1	0	-2.03262	0.16660	-1.80897

Addu	ıct	1h (AB)					
Sym	netry	C_1	C_1				
energ	gy	MP2 = -1258.4	637719 au				
Stand	lard orie	entation					
6	0	0.52560	0.35922	-0.10841			
6	0	1.55632	1.35905	0.09221			
6	0	0.96859	-1.00528	-0.21198			
6	0	2.92085	0.97916	0.19517			
6	0	-0.84338	0.82203	-0.15252			
6	0	1.23443	2.74123	0.12296			
6	0	2.32192	-1.32722	-0.10551			
6	0	3.30296	-0.34401	0.12705			
6	0	-1.09974	2.19454	-0.14489			
6	0	-0.07437	3.15011	0.00207			
1	0	3.66354	1.76105	0.34396			
1	0	2.60767	-2.37044	-0.22042			
1	0	4.35019	-0.62559	0.20540			
1	0	-2.11784	2.55442	-0.23379			
1	0	-0.32789	4.20772	0.00470			
1	0	2.03501	3.46415	0.26582			
16	0	-0.09787	-2.36927	-0.61521			
6	0	-0.49905	-2.96883	1.04882			
1	0	0.41725	-3.20550	1.59465			
1	0	-1.09022	-2.22330	1.58579			
1	0	-1.09085	-3.87965	0.91900			
16	0	-2.21806	-0.30587	-0.18565			
6	0	-3.59719	0.75757	0.31548			
1	0	-3.37067	1.30012	1.23725			
1	0	-3.90164	1.45102	-0.47202			
1	0	-4.42136	0.06288	0.50074			

Adduct	1h (CC)		
Symmetry C_2			
energy	MP2 = -1258.4	623005 au	
Standard orienta	ation		
6 0	0.00000	0.00000	0.56719
6 0	0.00000	0.00000	2.01373
6 0	0.00000	1.28017	-0.09123
6 0	-0.11549	1.21922	2.73257
6 0	0.00000	-1.28017	-0.09123
6 0	0.11549	-1.21922	2.73257
6 0	-0.16254	2.44605	0.65682
6 0	-0.21754	2.42115	2.06499
6 0	0.16254	-2.44605	0.65682
6 0	0.21754	-2.42115	2.06499
1 0	-0.11251	1.18640	3.82038
1 0	0.11251	-1.18640	3.82038
1 0	-0.21396	3.40386	0.14800
1 0	-0.33357	3.35224	2.61480
1 0	0.21396	-3.40386	0.14800
1 0	0.33357	-3.35224	2.61480
16 0	0.32193	1.42234	-1.83327
6 0	1.27131	2.96722	-1.89467
1 0	0.63352	3.85077	-1.82546
1 0	2.02854	2.98158	-1.10693

1	0	1.76183	2.96692	-2.87207
16	0	-0.32193	-1.42234	-1.83327
6	0	-1.27131	-2.96722	-1.89467
1	0	-0.63352	-3.85077	-1.82546
1	0	-2.02854	-2.98158	-1.10693
1	0	-1.76183	-2.96692	-2.87207

Addu	ıct	1i (BB)					
Symr	netry	C_{2v}					
energ	ςγ	MP2 = -5263.1	MP2 = -5263.1951649 au				
Stand	lard orie	entation					
6	0	0.00000	0.00000	1.08841			
6	0	0.00000	0.00000	2.54154			
6	0	0.00000	1.29558	0.44792			
6	0	0.00000	1.21469	3.27528			
6	0	0.00000	-1.29558	0.44792			
6	0	0.00000	-1.21469	3.27528			
6	0	0.00000	2.45894	1.21749			
6	0	0.00000	2.42664	2.62484			
6	0	0.00000	-2.45894	1.21749			
6	0	0.00000	-2.42664	2.62484			
1	0	0.00000	3.42950	0.73698			
1	0	0.00000	3.35996	3.18314			
1	0	0.00000	1.16496	4.36226			
1	0	0.00000	-3.42950	0.73698			
1	0	0.00000	-3.35996	3.18314			
1	0	0.00000	-1.16496	4.36226			
34	0	0.00000	1.49930	-1.46037			
6	0	0.00000	3.43343	-1.63312			
1	0	0.00000	3.60306	-2.71284			
1	0	-0.90100	3.87186	-1.20064			
1	0	0.90100	3.87186	-1.20064			
34	0	0.00000	-1.49930	-1.46037			
6	0	0.00000	-3.43343	-1.63312			
1	0	0.00000	-3.60306	-2.71284			
1	0	0.90100	-3.87186	-1.20064			
1	0	-0.90100	-3.87186	-1.20064			

۸dd	uct	1i (A		
G		C		
Sym	metry	C_2		
energ	gy	MP2 = -5263.1	98665 au	
Stan	dard orie	entation		
6	0	0.00000	0.00000	1.03162
6	0	0.00000	0.00000	2.48299
6	0	0.00000	1.28767	0.39125
6	0	-0.21996	1.20421	3.20215
6	0	0.00000	-1.28767	0.39125
6	0	0.21996	-1.20421	3.20215
6	0	-0.22325	2.44416	1.13812
6	0	-0.38164	2.40321	2.53883
6	0	0.22325	-2.44416	1.13812
6	0	0.38164	-2.40321	2.53883
1	0	-0.20343	3.40342	0.62593
1	0	-0.56145	3.32271	3.09063
1	0	-0.24494	1.16434	4.28975
1	0	0.20343	-3.40342	0.62593

1	0	0.56145	-3.32271	3.09063
1	0	0.24494	-1.16434	4.28975
34	0	0.43960	1.61093	-1.44331
6	0	2.19132	0.77242	-1.44958
1	0	2.67796	1.08511	-2.37676
1	0	2.76574	1.12948	-0.59352
1	0	2.09107	-0.31413	-1.43190
34	0	-0.43960	-1.61093	-1.44331
6	0	-2.19132	-0.77242	-1.44958
1	0	-2.67796	-1.08511	-2.37676
1	0	-2.76574	-1.12948	-0.59352
1	0	-2.09107	0.31413	-1.43190

Addu	ıct	1i (AB)		
Symi	metry	C_1		
energy		MP2 = -5263.2	008851 au	
Stand	lard orie	entation		
6	0	0.83726	0.65033	-0.05038
6	0	1.86247	1.67244	-0.00806
6	0	1.27875	-0.69231	-0.29224
6	0	3.20808	1.34909	-0.32690
6	0	-0.52766	1.07434	0.12782
6	0	1.54303	2.99554	0.39510
6	0	2.60775	-0.96539	-0.60861
6	0	3.57012	0.06345	-0.67395
6	0	-0.78530	2.37390	0.56386
6	0	0.24208	3.33131	0.70109
1	0	3.95046	2.14510	-0.30572
1	0	2.90267	-1.99946	-0.77038
1	0	4.60057	-0.17242	-0.92848
1	0	-1.80374	2.68701	0.76433
1	0	-0.00544	4.33451	1.04072
1	0	2.33624	3.73954	0.43577
34	0	0.15836	-2.21657	-0.02563
6	0	-0.02673	-2.01243	1.90329
1	0	0.95928	-2.02986	2.36970
1	0	-0.55158	-1.08165	2.12505
1	0	-0.62079	-2.86109	2.25096
34	0	-2.02145	-0.03797	-0.34680
6	0	-3.38487	1.35169	-0.50608
1	0	-3.70346	1.73698	0.46384
1	0	-3.03918	2.15978	-1.15371
1	0	-4.22983	0.84402	-0.97907

Addu	ıct	1i (CC)		
Sym	netry	C_2		
energ	ςy	MP2 = -5263.1	998938 au	
Stand	lard orie	ntation		
6	0	0.00000	0.00000	1.03345
6	0	0.00000	0.00000	2.47902
6	0	0.00000	1.27194	0.37309
6	0	-0.13831	1.22153	3.19060
6	0	0.00000	-1.27194	0.37309
6	0	0.13831	-1.22153	3.19060
6	0	-0.18406	2.44121	1.10626
6	0	-0.25797	2.41946	2.51577

6	0	0.18406	-2.44121	1.10626
6	0	0.25797	-2.41946	2.51577
1	0	-0.14373	1.19540	4.27880
1	0	0.14373	-1.19540	4.27880
1	0	-0.23562	3.39423	0.58553
1	0	-0.39350	3.34983	3.06237
1	0	0.23562	-3.39423	0.58553
1	0	0.39350	-3.34983	3.06237
34	0	0.44915	1.45473	-1.48316
6	0	1.80935	2.83907	-1.24652
1	0	1.35961	3.81332	-1.05419
1	0	2.47660	2.55442	-0.43167
1	0	2.36640	2.87612	-2.18605
34	0	-0.44915	-1.45473	-1.48316
6	0	-1.80935	-2.83907	-1.24652
1	0	-1.35961	-3.81332	-1.05419
1	0	-2.47660	-2.55442	-0.43167
1	0	-2.36640	-2.87612	-2.18605

Addu	ict	1j (BB)		
Sym	netry	\tilde{C}_{2v}		
energ	gy	MP2 = -13686.	8213291 au	
Stand	lard orie	entation		
6	0	0.00000	0.00000	1.46703
6	0	0.00000	0.00000	2.92320
6	0	0.00000	1.29663	0.83018
6	0	0.00000	1.21228	3.66033
6	0	0.00000	-1.29663	0.83018
6	0	0.00000	-1.21228	3.66033
6	0	0.00000	2.45786	1.60632
6	0	0.00000	2.42577	3.01344
6	0	0.00000	-2.45786	1.60632
6	0	0.00000	-2.42577	3.01344
1	0	0.00000	3.43154	1.13107
1	0	0.00000	3.35842	3.57292
1	0	0.00000	1.15880	4.74726
1	0	0.00000	-3.43154	1.13107
1	0	0.00000	-3.35842	3.57292
1	0	0.00000	-1.15880	4.74726
52	0	0.00000	1.64043	-1.27174
6	0	0.00000	3.78040	-1.22898
1	0	0.00000	4.07733	-2.28112
1	0	-0.90067	4.16543	-0.74898
1	0	0.90067	4.16543	-0.74898
52	0	0.00000	-1.64043	-1.27174
6	0	0.00000	-3.78040	-1.22898
1	0	0.00000	-4.07733	-2.28112
1	0	0.90067	-4.16543	-0.74898
1	0	-0.90067	-4.16543	-0.74898

Addu	ıct	1j (AA)		
Sym	metry	\tilde{C}_2		
energ	gy	MP2 = -13686.3	8262908 au	
Stand	lard orien	itation		
6	0	0.00000	0.00000	1.39147
6	0	0.00000	0.00000	2.84394

6	0	1.26091	0.25683	0.75016
6	0	1.22451	-0.00632	3.56136
6	0	-1.26091	-0.25683	0.75016
6	0	-1.22451	0.00632	3.56136
6	0	2.44048	0.24485	1.49815
6	0	2.43194	0.05219	2.89527
6	0	-2.44048	-0.24485	1.49815
6	0	-2.43194	-0.05219	2.89527
1	0	3.38304	0.46283	1.00046
1	0	3.37019	0.03356	3.44462
1	0	1.19166	-0.04367	4.64896
1	0	-3.38304	-0.46283	1.00046
1	0	-3.37019	-0.03356	3.44462
1	0	-1.19166	0.04367	4.64896
52	0	1.50952	0.95988	-1.23020
6	0	0.00000	2.46491	-1.12333
1	0	0.26209	3.24767	-1.83856
1	0	-0.97323	2.03535	-1.36748
1	0	-0.00133	2.87890	-0.11357
52	0	-1.50952	-0.95988	-1.23020
6	0	0.00000	-2.46491	-1.12333
1	0	-0.26209	-3.24767	-1.83856
1	0	0.97323	-2.03535	-1.36748
1	0	0.00133	-2.87890	-0.11357

Adduct		1j (AB)		
Symmetry		\tilde{C}_1		
energy	•	MP2 = -13686.8	308478 au	
Standard	d orient	ation		
6	0	-0.76277	1.18189	-0.06919
6	0	-1.43282	2.46443	-0.01234
6	0	0.63299	1.14183	0.27093
6	0	-0.75847	3.60475	0.49862
6	0	-1.57502	0.04856	-0.40355
6	0	-2.75606	2.59693	-0.51054
6	0	1.23086	2.27399	0.82616
6	0	0.53261	3.49309	0.96945
6	0	-2.87736	0.21676	-0.87334
6	0	-3.45923	1.49909	-0.96436
1	0	2.26926	2.23729	1.14042
1	0	1.03913	4.35163	1.40480
1	0	-1.28889	4.55428	0.54154
1	0	-3.47383	-0.66103	-1.11045
1	0	-4.47004	1.60960	-1.34962
1	0	-3.22093	3.58139	-0.49382
52	0	1.96649	-0.41579	-0.31433
6	0	3.65230	0.91958	-0.50759
1	0	4.39135	0.36865	-1.09614
1	0	3.35630	1.81889	-1.05122
1	0	4.09176	1.17813	0.45672
52	0	-0.98635	-1.92677	0.04188
6	0	-0.91912	-1.55778	2.14966
1	0	-0.68002	-2.50252	2.64302
1	0	-0.13717	-0.82496	2.35422
1	0	-1.89187	-1.19644	2.48438

Addu	ict	1j (CC)		
Symmetry		C_1		
energ	ςγ Σ	MP2 = -13686.	8313053 au	
Stand	lard orie	ntation		
6	0	-0.00515	1.38614	0.00571
6	0	-0.00149	2.83206	-0.00897
6	0	-1.19963	0.72284	-0.42557
6	0	-1.11318	3.54223	-0.53614
6	0	1.19863	0.72829	0.41970
6	0	1.09576	3.54613	0.54304
6	0	-2.24792	1.45645	-0.97842
6	0	-2.19920	2.86618	-1.05398
6	0	2.24055	1.46466	0.98079
6	0	2.19028	2.87477	1.04868
1	0	-3.13191	0.93601	-1.34103
1	0	-3.03434	3.41201	-1.48693
1	0	-1.08195	4.63045	-0.54506
1	0	3.12954	0.94829	1.33690
1	0	3.01728	3.42324	1.49378
1	0	1.06523	4.63441	0.54192
52	0	-1.64732	-1.29326	0.05533
6	0	-3.39443	-0.71520	1.17097
1	0	-3.72938	-1.59423	1.72734
1	0	-3.11912	0.07753	1.86788
1	0	-4.18945	-0.37975	0.50470
52	0	1.65136	-1.28764	-0.05599
6	0	3.40243	-0.70656	-1.16403
1	0	3.73910	-1.58418	-1.72157
1	0	3.12956	0.08797	-1.85986
1	0	4.19543	-0.37302	-0.49440

Addu	ıct	2'b (BB)		
Sym	metry	C_1		
energy		MP2 = -3129.4	526195 au	
Stand	lard orie	entation		
6	0	-1.16748	0.92553	0.00001
6	0	-1.90331	2.16547	0.00001
6	0	0.25745	1.03123	0.00001
6	0	-1.21161	3.40726	0.00003
6	0	-1.89226	-0.31750	-0.00001
6	0	-3.32167	2.14029	0.00001
6	0	0.91531	2.25031	0.00002
6	0	0.16666	3.44766	0.00003
6	0	-3.28562	-0.28098	-0.00001
6	0	-3.99667	0.93827	-0.00001
1	0	-1.79170	4.32770	0.00003
1	0	2.00046	2.27985	0.00003
1	0	0.68890	4.40132	0.00004
1	0	-3.86484	3.08324	0.00001
1	0	-3.85827	-1.20105	-0.00002
1	0	-5.08426	0.91780	-0.00001
34	0	-0.98172	-2.00581	-0.00003
6	0	-2.50905	-3.20432	-0.00005
1	0	-3.11594	-3.08420	0.89899
1	0	-3.11594	-3.08417	-0.89909
1	0	-2.06857	-4.20467	-0.00007
8	0	0.92793	-0.17035	0.00001
6	0	2.31405	-0.15845	0.00001

6	0	2.99125	-0.18963	-1.22039
6	ŏ	2.99124	-0.18965	1.22042
6	0	4.38924	-0.24020	-1.21310
6	0	4.38923	-0.24022	1.21314
6	0	5.08797	-0.2644	0.00002
1	0	2.42063	-0.1771	-2.14533
1	0	2.42061	-0.17714	2.14535
1	0	4.93088	-0.26894	-2.15507
1	0	4.93086	-0.26898	2.15511
1	0	6.17375	-0.30732	0.00003

Adduct		2'b (AA)				
Symmetry		C_1				
energy		MP2 = -3129.4	MP2 = -3129.4543488 au			
Stand	lard orie	entation				
6	0	1.37913	0.30931	0.08462		
6	0	2.67390	0.86170	-0.25458		
6	0	0.52879	1.14620	0.87322		
6	0	3.04647	2.15725	0.19463		
6	0	1.08882	-1.03190	-0.34085		
6	0	3.54319	0.14421	-1.11843		
6	0	0.92577	2.39761	1.31324		
6	0	2.20452	2.90034	0.99730		
6	0	1.98111	-1.69446	-1.18224		
6	0	3.20290	-1.11040	-1.58006		
1	0	4.02759	2.54016	-0.07947		
1	0	0.21901	2.97329	1.90574		
1	0	2.50112	3.88573	1.34728		
1	0	4.50121	0.58929	-1.38118		
1	0	1.74104	-2.70857	-1.49244		
1	0	3.87201	-1.65613	-2.24105		
34	0	-0.47425	-2.03458	0.12612		
6	0	-0.11851	-2.20977	2.03176		
1	0	0.86274	-2.66117	2.18402		
1	0	-0.18462	-1.23305	2.51048		
1	0	-0.89222	-2.87194	2.42851		
8	0	-0.74405	0.74697	1.23942		
6	0	-1.74736	0.90394	0.29800		
6	0	-1.52205	1.37688	-0.99776		
6	0	-3.02691	0.53086	0.72107		
6	0	-2.60843	1.46617	-1.87873		
6	0	-4.09726	0.62684	-0.16901		
6	0	-3.89205	1.08882	-1.47581		
1	0	-0.52734	1.67048	-1.31955		
1	0	-3.15837	0.1656	1.73631		
1	0	-2.43947	1.83042	-2.88928		
1	0	-5.09204	0.33427	0.15796		
1	0	-4.72575	1.15997	-2.16884		

Adduct	2'b (AB)				
Symmetry	C_1	C_1			
energy	MP2 = -3129.4	MP2 = -3129.4565006 au			
Standard or	ientation				
6 0	1.38429	-0.56867	-0.15606		
6 0	2.57055	-1.32183	0.17838		
6 0	0.30701	-1.30696	-0.72329		

6	0	2.58270	-2.73325	0.01883
6	0	1.39135	0.85829	0.02052
6	0	3.68646	-0.65644	0.74937
6	0	0.34705	-2.68013	-0.88862
6	0	1.50356	-3.40121	-0.52773
6	0	2.51944	1.46099	0.57238
6	0	3.66628	0.71203	0.91723
1	0	3.48372	-3.27852	0.29334
1	0	-0.51870	-3.17286	-1.32463
1	0	1.53095	-4.48019	-0.65699
1	0	4.57062	-1.23563	1.00819
1	0	2.55092	2.53494	0.71740
1	0	4.52412	1.22509	1.34634
34	0	-0.14010	1.90354	-0.44623
6	0	0.45060	3.64413	0.17569
1	0	0.65760	3.63404	1.24734
1	0	1.31466	4.00284	-0.38622
1	0	-0.39756	4.30572	-0.01764
8	0	-0.82798	-0.63193	-1.14162
6	0	-1.94090	-0.69572	-0.31586
6	0	-1.87599	-1.10424	1.01949
6	0	-3.13675	-0.24736	-0.88384
6	0	-3.04827	-1.08064	1.78506
6	0	-4.29526	-0.22698	-0.10385
6	0	-4.2556	-0.64105	1.23347
1	0	-0.93567	-1.43092	1.45377
1	0	-3.1377	0.07132	-1.92283
1	0	-3.00745	-1.39723	2.82447
1	0	-5.22872	0.1168	-0.54249
1	0	-5.15853	-0.62618	1.83757