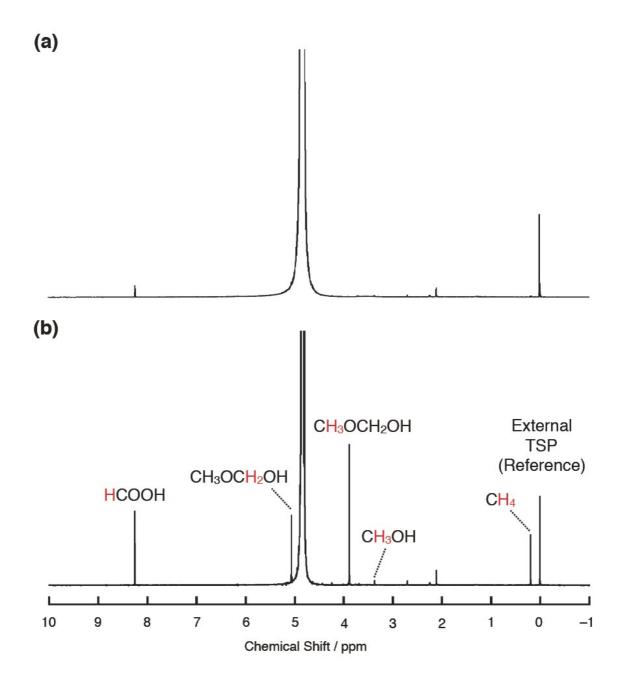
Supplementary Information for

Catalytic Methane Oxidation by Supramolecular Conjugate Based on µ-Nitrido-Bridged Iron Porphyrinoid Dimer

Yasuyuki Yamada,^{1,2,3}* Kentaro Morita, Nozomi Mihara,¹ Kazunobu Igawa,⁴ Katsuhiko Tomooka,⁴ and Kentaro Tanaka¹*


¹Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan

²Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan

³JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan

⁴Institute for Materials Chemistry and Engineering, and Department of Material and Molecular Sciences, Kyushu University, Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan

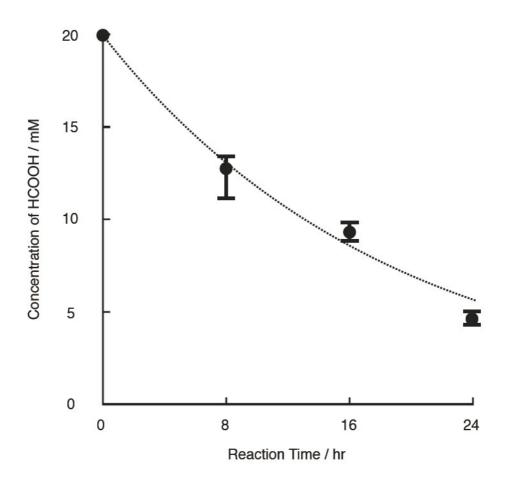

^{*}E-mail: yamada.yasuyuki@h.mbox.nagoya-u.ac.jp, kentaro@chem.nagoya-u.ac.jp

Figure S1. Comparison of ¹H-NMR spectra of the reaction mixture in the (a) presence and (b) absence of methane. The reaction was carried out in D₂O (1.5 mL) in the presence of $1^{5+} \cdot 5 \text{Cl}^-/\text{SiO}_2$ (141 μM as $1^{5+} \cdot 5 \text{Cl}^-$), H₂O₂ (160 mM) and TFA (51 mM) under (a) N₂ (1.0 MPa) or (b) methane (1.0 MPa) atmosphere at 60 °C for 8 hours.

Table S1. Oxidations of methane or ethane by μ-nitrido-bridged iron porphyrinoid dimer-based catalysts on silica supports in the presence of H_2O_2 in an acidic aqueous solution. Each reaction was carried out in the presence of a silica-supported catalyst (71 μM), H_2O_2 (160 mM) and TFA (51 mM) in H_2O (1.5 mL) under methane or ethane (1.0 MPa) atmosphere at 60 °C. TTN_{eff}'s and MCN_{eff}'s were calculated according to the equations (i) - (iv) shown in the main text. *Effective ethane conversion number (ECN_{eff}) defined as the number of converted ethane into ethanol by one catalyst during the reaction.

No.	Catalyst	Substrate	T/°C	Reaction Time / hr	TTNeff	MCNeff
1	15+-5Cl-	CH ₄	60	1	2	3
2	15+-5Cl-	CH ₄	60	2	5	4
3	15+-5Cl-	CH ₄	60	3	9	5
4	15+-5Cl-	CH ₄	60	4	11	6
5	15+-5Cl-	CH ₄	60	5	14	7
6	15+-5Cl-	CH ₄	60	6	17	9
7	15+-5Cl-	CH ₄	60	7	23	11
8	15+-5Cl-	CH ₄	60	8	30	13
9	15+-5C1-	CH ₄	60	16	51	21
10	15+-5C1-	CH ₄	60	24	59	23
11	15+-5Cl-	CH ₃ CH ₃	60	24	241	*117
12	15+-Cu(II)-TPPS4Cl-	CH ₄	60	8	44	18
13	15+-Ni(II)-TPPS4Cl-	CH ₄	60	8	47	19

Figure S2. Changes in the concentration of HCOOH during the oxidation reaction of 20 mM (initial concentration) of HCOOH by $1^{5+} \cdot 5 \text{Cl}^-/\text{SiO}_2$ in the presence of H_2O_2 (160 mM) and TFA (51 mM) in H_2O (1.5 mL) at 60°C.