Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting information

for

New palladium(II) complexes with 3-(2-pyridyl)-5-alkyl-1,2,4-triazole ligands as recyclable C–C coupling catalysts

Borys V. Zakharchenko,^a Dmytro M. Khomenko,^{a,*} Roman O. Doroshchuk,^a Ilona V. Raspertova,^a Viktoriia S. Starova,^a Volodymyr V. Trachevsky,^b Sergiu Shova,^c Olga V. Severynovska,^d Luísa M. D. R. S. Martins,^{e,**} Armando J. L. Pombeiro,^e Vladimir B. Arion^f and Rostyslav D. Lampeka^a

^a Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64/13, Kyiv 01601, Ukraine

^b G.V. Kurdyumov Institute for Metal Physics, N.A.S. of Ukraine, Academician Vernadsky Blvd.36, Kyiv, 03680, Ukraine

^c"Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania

^d Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 General Naumov Street, Kyiv 03164, Ukraine

^eCentro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

^fUniversity of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry, Währinger Strasse 42, 1090 Vienna, Austria

* Corresponding author: E-mail: <u>dkhomenko@ukr.net</u> (Dmytro M. Khomenko)

** E-mail: luisammartins@tecnico.ulisboa.pt (Luísa M. D. R. S. Martins)

Contents

Figure S1. IR for 3a (top) and 3b (bottom)	. S3
Figure S2. IR for 3c (top) and 3d (bottom)	. S4
Figure S3. IR for 4a (top) and 4b (bottom)	. S5
Figure S4. IR for 4c (top) and 4d (bottom)	. S6
Figure S5. MALDI-TOF mass spectra in linear negative (top) and positive (bottom) ion mode	. S7
Figure S6. MALDI-TOF mass spectra in reflectron negative (top) and positive (bottom) ion mode.	. S8
Figure S7. ESI mass spectra of 4a (top) and 4b (bottom).	. S9
Figure S8. ESI mass spectra of 4c (top) and 4d (bottom)	S10
Figure S9. (Top) ¹ H- and (bottom) ¹³ C-NMR spectra of 3a in CDCl ₃	S11
Figure S10. (Top) ¹ H- and (bottom) ¹³ C-NMR spectra of 3b in CDCl ₃	S12
Figure S11. (Top) ¹ H- and (bottom) ¹³ C-NMR spectra of 3c in CDCl ₃	S13
Figure S12. (Top) ¹ H- and (bottom) ¹³ C-NMR spectra of 3d in CDCl ₃	S14
Figure S13. (Top) ¹ H- and (bottom) ¹³ C-NMR spectra of 4a in CDCl ₃	S15
Figure S14. (Top) ¹ H- and (bottom) ¹³ C-NMR spectra of 4b in CDCl ₃	S16
Figure S15. (Top) ¹ H- and (bottom) ¹³ C-NMR spectra of 4c in CDCl ₃	S17
Figure S16. (Top) ¹ H- and (bottom) ¹³ C-NMR spectra of 4d in CDCl ₃	S18
Figure S17. TG/DTA curves of 4a (top), 4b (middle) and 4c (bottom)	S19
Figure S18. Yields for the Henry reaction between benzaldehyde and nitroethane catalysed by 4a-	d in water
(25 °C – left and 75 °C- right)	S20
Figure S19. Yields for the Henry reaction between benzaldehyde and nitroethane catalysed by 4a-	d in EtOH
(25 °C – left and 75 °C- right)	S20
Figure S20. Yields for the Henry reaction between benzaldehyde and nitroethane catalysed b	y 4a-d in
MeOH (25 °C – left and 75 °C- right).	S20
Figure S21. for the MW-assisted Suzuki-Miyaura reaction between 4-methoxybromobenzene a	nd phenyl
boronic acid catalysed by 4a-d in water (K ₂ CO ₃ -left and Cs ₂ CO ₃ - right)	S21
Figure S22. Yield for the MW-assisted Suzuki-Miyaura reaction between 4-methoxybromober	nzene and
phenyl boronic acid catalysed by 4a-d in CHCl ₃ (K ₂ CO ₃ -left and Cs ₂ CO ₃ - right)	S21
Figure S23. Yield for the MW-assisted Suzuki-Miyaura reaction between 4-methoxybromober	nzene and
phenyl boronic acid catalysed by 4a-d in EtOH (K2CO3 -left, in centre - K2CO3 under convention	al heating
instead of MW irradiation. and Cs ₂ CO ₃ - right).	S21
Table S1. Bond-lengths-[Å]-and-angles-[°]-for-4a	S22
Table S2. Bond-lengths-[Å]-and-angles-[°]-for-4b	S22
Table S3. Bond-lengths-[Å]-and-angles-[°]-for-4c	S23
Table S4. Bond-lengths-[Å]-and-angles-[°]-for-4d	S24
Table S5. Crystallographic data, details of data collection and structure refinement parameter	ers for 4a
- 4d	S24

Figure S1. IR for 3a (top) and 3b (bottom)

Figure S2. IR for 3c (top) and 3d (bottom)

Figure S3. IR for 4a (top) and 4b (bottom)

Figure S4. IR for 4c (top) and 4d (bottom)

Figure S5. MALDI-TOF mass spectra in linear negative (top) and positive (bottom) ion mode

Figure S6. MALDI-TOF mass spectra in reflectron negative (top) and positive (bottom) ion mode

Figure S7. ESI mass spectra of 4a (top) and 4b (bottom).

Figure S8. ESI mass spectra of 4a (top) and 4b (bottom).

Figure S9. (Top) ¹H- and (bottom) ¹³C-NMR spectra of 3a in CDCl₃

Figure S10. (Top) ¹H- and (bottom) ¹³C-NMR spectra of 3b in CDCl₃

Figure S11. (Top) ¹H- and (bottom) ¹³C-NMR spectra of 3c in CDCl₃

Figure S12. (Top) ¹H- and (bottom) ¹³C-NMR spectra of 3d in CDCl₃

Figure S13. (Top) ¹H- and (bottom) ¹³C-NMR spectra of 4a in CDCl₃

Figure S15. (Top) ¹H- and (bottom) ¹³C-NMR spectra of 4c in CDCl₃

Figure S16. (Top) ¹H- and (bottom) ¹³C-NMR spectra of 4d in CDCl₃

Figure S17. TG/DTA curves of 4a (top), 4b (middle) and 4c (bottom).

Figure S18. Yields for the Henry reaction between benzaldehyde and nitroethane catalysed by **4a-d** in water (25 °C – left and 75 °C- right).

Figure S19. Yields for the Henry reaction between benzaldehyde and nitroethane catalysed by **4a-d** in EtOH (25 °C – left and 75 °C- right).

Figure S20. Yields for the Henry reaction between benzaldehyde and nitroethane catalysed by **4a-d** in MeOH (25 °C – left and 75 °C- right).

Figure S21. Yield for the MW-assisted Suzuki-Miyaura reaction between 4-methoxybromobenzene and phenyl boronic acid catalysed by **4a-d** in water (K₂CO₃–left and Cs₂CO₃- right).

Figure S22. Yield for the MW-assisted Suzuki-Miyaura reaction between 4-methoxybromobenzene and phenyl boronic acid catalysed by **4a-d** in CHCl₃ (K₂CO₃–left and Cs₂CO₃- right).

Figure S23. Yield for the MW-assisted Suzuki-Miyaura reaction between 4-methoxybromobenzene and phenyl boronic acid catalysed by **4a-d** in EtOH (K_2CO_3 –left, in centre - K_2CO_3 under conventional heating instead of MW irradiation. and Cs_2CO_3 - right).

Pd1-N1 ¹	2.036(4)	N1 ¹ -Pd1-N1	180.0	
Pd1-N1	2.037(4)	N2 ¹ -Pd1-N1 ¹	-N1 ¹ 79.73(18)	
Pd1-N2	1.995(4)	N2-Pd1-N1 79.73(
Pd1-N2 ¹	1.995(4)	N2 ¹ -Pd1-N1 100.27(
N1-C1	1.333(6)	N2-Pd1-N1 ¹	100.27(18)	
N1-C5	1.374(6)	N2-Pd1-N2 ¹	180.0	
N2-N3	1.348(5)	C1-N1-Pd1	125.8(3)	
N2-C6	1.340(6)	C1-N1-C5	118.8(5)	
N3-C7	1.342(6)	C5-N1-Pd1	115.4(4)	
N4-C6	1.330(6)	N3-N2-Pd1	136.4(3)	
N4-C7	1.367(6)	C6-N2-Pd1	115.7(4)	
C1-C2	1.381(7)	C6-N2-N3	107.9(4)	
C2-C3	1.362(7)	C7-N3-N2	104.1(4)	
C3-C4	1.370(7)	C6-N4-C7	101.4(4)	
C4-C5	1.375(7)	N1-C1-C2	121.6(5)	
C5-C6	1.455(7)	C3-C2-C1	119.2(6)	
C7-C8	1.481(7)	C2-C3-C4	120.6(5)	
C8-C9	1.511(8)	C3-C4-C5	118.5(5)	
		N1-C5-C4	121.4(5)	
		N1-C5-C6	112.4(5)	
		C4-C5-C6	126.2(5)	
		N2-C6-C5	116.8(5)	
		N4-C6-N2	112.8(5)	
		N4-C6-C5	130.4(5)	
		N3-C7-N4	113.8(5)	
		N3-C7-C8	122.0(5)	
		N4-C7-C8	124.0(5)	
		C7-C8-C9	112.8(5)	

 $Table-S1.\text{-}Bond\text{-}lengths\text{-}[\text{\AA}]\text{-}and\text{-}angles\text{-}[^\circ]\text{-}for\text{-}4a.$

1-x,1-y, 1-z

 Table-S2.-Bond-lengths-[Å]-and-angles-[°]-for-4b.

Pd1-N1 ¹	2.0387(19)	N1 ¹ -Pd1-N1	180.0
Pd1-N1	2.0387(19)	N2 ¹ -Pd1-N1	100.68(8)
Pd1-N2	1.995(2)	N2-Pd1-N1 ¹	100.68(8)
Pd1-N2 ¹	1.995(2)	N2-Pd1-N1	79.32(8)
N1-C1	1.347(3)	N2 ¹⁻ Pd1-N1 ¹	79.31(8)
N1-C5	1.352(3)	N2-Pd1-N2 ¹	180.0
N2-N3	1.366(3)	C1-N1-Pd1	125.25(17)
N2-C6	1.332(3)	C1-N1-C5	119.3(2)
N3-C7	1.338(3)	C5-N1-Pd1	115.45(15)
N4-C6	1.327(3)	N3-N2-Pd1	136.30(16)
N4-C7	1.359(3)	C6-N2-Pd1	116.04(16)
C1-C2	1.370(4)	C6-N2-N3	107.66(19)
C2-C3	1.375(4)	C7-N3-N2	103.5(2)
C3-C4	1.379(4)	C6-N4-C7	101.7(2)
C4-C5	1.375(3)	N1-C1-C2	121.1(2)
C5-C6	1.458(3)	C1-C2-C3	120.0(2)

C7-C8	1.490(3)	C2-C3-C4	118.9(2)
C8-C9	1.523(4)	C5-C4-C3	119.3(2)
C9-C10	1.510(4)	N1-C5-C4 121.4	
		N1-C5-C6	113.1(2)
		C4-C5-C6	125.5(2)
		N2-C6-C5	116.1(2)
		N4-C6-N2	112.9(2)
		N4-C6-C5	130.9(2)
		N3-C7-N4	114.3(2)
		N3-C7-C8	121.9(2)
		N4-C7-C8	123.8(2)
		C7-C8-C9	113.7(2)
		C10-C9-C8	112.9(2)

¹1-x,-y,-z

 Table-S3.-Bond-lengths-[Å]-and-angles-[°]-for-4c.

Pd1-N1 ¹	2.021(6)	N1 ¹ -Pd1-N1 180.0		
Pd1-N1	2.021(6)	N2-Pd1-N1 79.0(
Pd1-N2 ¹	1.963(6)	$N2^{1}-Pd1-N1^{1}$ 79.0		
Pd1-N2	1.963(6)	N2-Pd1-N1 ¹ 101.0		
N1-C1	1.329(10)	N2 ¹ -Pd1-N1	101.0(3)	
N1-C5	1.338(10)	N2 ¹ -Pd1-N2	180.0(3)	
N2-N3	1.356(9)	C1-N1-Pd1	124.7(6)	
N2-C6	1.339(11)	C1-N1-C5	119.8(7)	
N3-C7	1.314(10)	C5-N1-Pd1	115.4(5)	
N4-C6	1.315(10)	N3-N2-Pd1	136.3(6)	
N4-C7	1.352(10)	C6-N2-Pd1	117.0(6)	
C1-C2	1.363(11)	C6-N2-N3	106.6(7)	
C2-C3	1.360(12)	C7-N3-N2	103.8(6)	
C3-C4	1.384(11)	C6-N4-C7	100.7(7)	
C4-C5	1.378(11)	N1-C1-C2 121.		
C5-C6	1.434(12)	C3-C2-C1	C1 119.8(9)	
C7-C8	1.492(11)	C2-C3-C4	119.2(8)	
C8-C9	1.498(12)	C5-C4-C3	118.5(8)	
C8-C10	1.525(12)	N1-C5-C4	121.2(8)	
		N1-C5-C6	113.9(7)	
		C4-C5-C6	124.8(8)	
		N2-C6-C5	114.6(8)	
		N4-C6-N2	113.5(8)	
		N4-C6-C5	131.9(8)	
		N3-C7-N4	115.3(7)	
		N3-C7-C8	122.1(7)	
		N4-C7-C8	122.5(8)	
		C7-C8-C9	112.2(7)	
		C7-C8-C10	109.3(7)	
		C9-C8-C10	110.7(7)	

¹1-x,2-y,1-z

Pd1A-N1A	2.026(6)	N1A-Pd1A-N5A	179.7(3)
Pd1A-N2A	2.022(7)	N2A-Pd1A-N1A	79.3(3)
Pd1A-N5A	2.029(6)	N2A-Pd1A-N5A	100.4(3)
Pd1A-N6A	2.003(6)	N6A-Pd1A-N1A	101.0(3)
N1A-C1A	1.346(9)	N6A-Pd1A-N2A	179.7(3)
N1A-C5A	1.324(10)	N6A-Pd1A-N5A	79.3(3)
N2A-N3A	1.359(8)	C1A-N1A-Pd1A	125.9(5)
N2A-C6A	1.335(9)	C5A-N1A-Pd1A	117.6(6)
N3A-C7A	1.348(10)	C5A-N1A-C1A	116.5(7)
N4A-C6A	1.336(10)	N3A-N2A-Pd1A	136.5(5)
N4A-C7A	1.356(10)	C6A-N2A-Pd1A	114.6(6)
N5A-C11A	1.339(10)	C6A-N2A-N3A	108.9(7)
N5A-C15A	1.348(10)	C7A-N3A-N2A	102.5(7)
N6A-N7A	1.371(9)	C6A-N4A-C7A	101.5(7)
N6A-C16A	1.338(9)	C11A-N5A-Pd1A	125.7(6)
N7A-C17A	1.337(10)	C11A-N5A-C15A	118.1(7)
N8A-C16A	1.334(10)	C15A-N5A-Pd1A	116.2(5)
N8A-C17A	1.356(10)	N7A-N6A-Pd1A	136.4(5)
C1A-C2A	1.398(10)	C16A-N6A-Pd1A	116.4(6)
C2A-C3A	1.380(11)	C16A-N6A-N7A	107.2(6)
C3A-C4A	1.380(11)	C17A-N7A-N6A	103.4(7)
C4A-C5A	1.366(10)	C16A-N8A-C17A	101.1(7)
C5A-C6A	1.491(11)	N1A-C1A-C2A	122.7(8)
C7A-C8A	1.517(11)	C3A-C2A-C1A	118.9(8)
C8A-C9A	1.525(11)	C4A-C3A-C2A	118.0(8)
C8A-C10A	1.517(7)	C5A-C4A-C3A	119.2(8)
C8A-C10A ¹	1.517(7)	N1A-C5A-C4A	124.7(8)
C11A-C12A	1.372(10)	N1A-C5A-C6A	111.9(7)
C12A-C13A	1.365(11)	C4A-C5A-C6A	123.4(8)
C13A-C14A	1.355(11)	N2A-C6A-N4A	112.1(7)
C14A-C15A	1.388(10)	N2A-C6A-C5A	116.6(8)
C15A-C16A	1.479(11)	N4A-C6A-C5A	131.3(8)
C17A-C18A	1.518(11)	N3A-C7A-N4A	114.9(8)
C18A-C19A ¹	1.522(8)	N3A-C7A-C8A	123.6(8)
C18A-C19A	1.522(8)	N4A-C7A-C8A	121.5(8)
C18A-C20A	1.535(11)	C7A-C8A-C9A	110.8(8)
Pd1B-N1B ²	2.031(7)	C10A-C8A-C7A	108.9(5)
Pd1B-N1B	2.031(7)	C10A ¹ -C8A-C7A	108.9(5)
Pd1B-N2B ²	1.990(7)	C10A ¹ -C8A-C9A	108.1(5)
Pd1B-N2B	1.990(7)	C10A-C8A-C9A	108.1(5)
N1B-C1B	1.376(10)	C10A ¹ -C8A-C10A	112.2(9)
N1B-C5B	1.349(10)	N5A-C11A-C12A	122.1(8)
N2B-N3B	1.381(9)	C13A-C12A-C11A	120.3(9)
N2B-C6B	1.339(10)	C14A-C13A-C12A	117.7(8)
N3B-C7B	1.343(10)	C13A-C14A-C15A	121.0(8)
N4B-C6B	1.350(10)	N5A-C15A-C14A	120.8(8)
N4B-C7B	1.365(11)	N5A-C15A-C16A	113.1(7)

 $\label{eq:table-s4} \textbf{Table-S4}.-Bond-lengths-[\text{Å}]-and-angles-[^\circ]-for-\textbf{4d}.$

C1B-C2B	1.374(11)	C14A-C15A-C16A	126.1(8)
C2B-C3B	1.376(11)	N6A-C16A-C15A	115.0(7)
C3B-C4B	1.417(12)	N8A-C16A-N6A	113.2(7)
C4B-C5B	1.348(11)	N8A-C16A-C15A	131.8(8)
C5B-C6B	1.452(12)	N7A-C17A-N8A	115.0(8)
C7B-C8B	1.539(11)	N7A-C17A-C18A	122.2(8)
C8B-C9B ³	1.506(8)	N8A-C17A-C18A	122.8(8)
C8B-C9B	1.506(8)	C17A-C18A-C19A ¹	109.1(5)
C8B-C10B	1.527(11)	C17A-C18A-C19A	109.1(5)
Cl1-C1	1.709(10)	C17A-C18A-C20A	109.9(8)
Cl2-C1	1.753(7)	C19A ¹ -C18A-C19A	111.4(9)
		C19A-C18A-C20A	108.6(5)
		C19A ¹ -C18A-C20A	108.6(5)
		N1B-Pd1B-N1B ²	180.0
		N2B-Pd1B-N1B ²	101.4(3)
		N2B ² -Pd1B-N1B	101.4(3)
		N2B ² -Pd1B-N1B ²	78.6(3)
		N2B-Pd1B-N1B	78.6(3)
		N2B-Pd1B-N2B ²	180.0
		C1B-N1B-Pd1B	125.2(6)
		C5B-N1B-Pd1B	117.5(6)
		C5B-N1B-C1B	117.3(8)
		N3B-N2B-Pd1B	135.9(6)
		C6B-N2B-Pd1B	115.8(6)
		C6B-N2B-N3B	108.3(7)
		C7B-N3B-N2B	103.4(7)
		C6B-N4B-C7B	102.2(7)
		C2B-C1B-N1B	121.2(9)
		C1B-C2B-C3B	120.5(10)
		C2B-C3B-C4B	118.3(9)
		C5B-C4B-C3B	118.2(9)
		N1B-C5B-C4B	124.5(9)
		N1B-C5B-C6B	111.0(8)
		C4B-C5B-C6B	124.4(8)
		N2B-C6B-N4B	111.8(8)
		N2B-C6B-C5B	117.1(8)
		N4B-C6B-C5B	131.1(8)
		N3B-C7B-N4B	114.3(8)
		N3B-C7B-C8B	121.3(9)
		N4B-C7B-C8B	124.4(8)
		C9B ³ -C8B-C7B	108.1(5)
		C9B-C8B-C7B	108.1(5)
		C9B-C8B-C9B ³	114.2(10)
		C9B-C8B-C10B	108.3(5)
		C9B ³ -C8B-C10B	108.3(5)
		C10B-C8B-C7B	109.9(8)
		Cl1-Cl-Cl2 ¹	111.1(4)
		Cl1-Cl-Cl2	111.1(4)
		Cl2-C1-Cl2 ¹	109.0(7)

Identification code	4a	4b	4c	4d
Empirical formula	$C_{18}H_{18}N_8Pd$	$C_{20}H_{22}N_8Pd$	$C_{20}H_{22}N_8Pd$	$C_{68}H_{84}Cl_6N_{24}O_2Pd_3$
Formula weight	452.80	480.85	480.85	1801.49
Temperature/K	293	200	293	293
Space group	<i>P</i> -1	<i>P</i> -1	$P2_{1}/c$	C2/m
a/Å	4.5732(7)	5.4343(3)	4.4346(9)	30.046(8)
b/Å	9.8193(12)	8.4913(3)	10.181(4)	6.8662(12)
c/Å	10.5527(13)	10.9739(5)	21.341(7)	23.785(6)
α/°	71.200(11)	88.134(3)	90	90
β/°	86.444(11)	80.550(4)	92.15(2)	126.80(4)
γ/°	76.934(12)	76.336(4)	90	90
Volume/Å ³	436.95(11)	485.36(4)	962.9(5)	3929(2)
Ζ	1	1	2	2
$\rho_{\rm calc} {\rm g/cm^3}$	1.721	1.645	1.659	1.523
μ/mm^{-1}	1.084	0.981	0.989	0.943
Crystal size/mm ³	$0.10 \times 0.05 \times 0.02$	$0.20 \times 0.20 \times 0.15$	$0.30 \times 0.10 \times 0.10$	$0.2 \times 0.15 \times 0.15$
$\theta_{\min}, \theta_{\max}()$	4.078 to 50.05	3.762 to 50.048	4.434 to 58.998	3.386 to 50.054
Reflections collected	2905	3495	2623	7696
Indemendent reflections	$1543[R_{int} = 0.0519]$	1724 [R _{int} =	1722 [R _{int} =	$3784 [R_{int} = 0.0722]$
independent reflections		0.0314]	0.0314]	
Data/restraints/parameters	1543/0/125	1724/0/134	2623/0/136	3784/0/299
GOF ^a	1.081	1.004	1.010	0.928
$R_1^{b}(I>2\sigma(I))$	0.0615	0.0250,	0.0702	0.0601
wR_2^c (all data)	0.0865	0.0579	0.1615	0.1030
Largest diff peak/hole / e Å ⁻³	0 77/-0 58	0 60/-0 42	2 27/-1 27	1 23/-0 60

Table S5. Crystallographic data, details of data collection and structure refinement parameters for 4a - 4d.

^{*a*} GOF = { $\Sigma[w(F_o^2 - F_c^2)^2]/(n-p)$ }^{1/2}, where *n* is the number of reflections and *p* is the total number of parameters refined; ${}^{b}R_1 = \Sigma ||F_o| - |F_c||/\Sigma |F_o|$; ${}^{c}wR_2 = {\Sigma[w(F_o^2 - F_c^2)^2]/\Sigma[w(F_o^2)^2]}^{1/2}$.