Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supplementary Information

A facile, solid-state reaction assisted synthesis of berry-like NaNbO₃

perovskite structure for binder-free, highly selective sensing of dopamine in

blood samples

Lignesh Durai¹, and Sushmee Badhulika^{1*}

¹Department of Electrical Engineering, Indian Institute of Technology, Hyderabad,

502285, India.

^{*}Corresponding author: E-mail: sbadh@iith.ac.in; Telephone: +040-23018443

Morphological, Structural and Composition Analysis of Nb₂O₅

The SEM image shown in the Fig. S1 describes the morphology of the niobium pentoxide (Nb₂O₅) nanopowders obtained though the as synthesised solvothermal technique. The Fig S1(a) shows the massive agglomeration of the Nb₂O₅ nanoparticles as a microstructure and this was much clearly supported by the magnified image shown in fig. S1(b). The particle remains to be spherical in shape and the size of the particle remains ~10 to ~30nM as it get agglomerated to grow into micrometres structures. Fig. S1(c) displays the XRD pattern which confirms the amorphous Nb₂O₅ nanomaterial [1-3]. This is because the particles could not change into crystal under this temperature. Fig. S1(d) shows the Raman spectra of the Nb₂O₅ nanoparticles where the intense band found at 695cm⁻¹ corresponds to the symmetric stretching of Nb-O (v₁) along with the shoulder peak found at 465cm⁻¹ indicates the v₅(T_{2g}) mode [4]. These structural and chemical analysis proves that there are no adequate traces of impurities of the precursors found at the end product of Nb₂O₅ nanopawders. Hence it has been used in the synthesis of NaNbO₃

through SSR without any further purification process. Fig. S1(e) depicts the FTIR spectrum of Nb₂O₅. The symmetric bending of Nb-O-Nb polyhedral was ascribed with the broad peak observed at 603 cm⁻¹[5]. The hexagonal formation of Nb₂O₅ was witnessed with the presence of sharp peak at 810 cm⁻¹ which can also be attributed to O-Nb-O bending [6]. The OH molecules were observed with the presence of peaks at 1550cm⁻¹ and 3329 cm⁻¹ [7,8]. Fig. S1(f) shows the CV response of Nb₂O₅ nanopowder modified GCE towards the electrooxidation of DA in comparison with NaNbO₃/GCE and bare GCE. The response of the NaNbO₃/GCE was witnessed to be more prominent than the Nb₂O₅/GCE due to the presence of NbO₆ octahedra whereas Nb₂O₅ displayed only a mild reduction peak at ~0.07V. Hence, the enhancement in the response of NaNbO₃/GCE towards the DA was ascribed to the presence of the octahedral sites.

Figure S1: (a) SEM Images of Nb₂O₅ nanopowder (b) magnified SEM image of the Nb₂O₅ nanopowder (c) XRD pattern and (d) Raman spectra of the Nb₂O₅ nanopowder (e) FTIR spectra of Nb₂O₅ nanopowder (f) Typical CV response of Nb₂O₅/GCE, NaNbO₃/GCE and Bare GCE in presence of 300μ M DA

Figure S2: Oxidation peak current response of 0.1, 0.3, 0.5, 0.7 and 1wt% of the NaNbO₃/GCE in the presence of a 10μ M DA (N = 3 devices).

The study on impact of electrolyte pH on electrooxidation of DA and to determine the optimal pH value of 0.1M PBS electrolyte for sensing, the CV of NaNbO₃/GCE was investigated at different pH from 7.0 -7.4 pH as shown in the fig. S3(a). The corresponding oxidation peak current versus pH was obtained as shown in fig. S3(b). There was a linear increase in the oxidation current as the pH increased from 7.0 to 7.2pH and the highest peak current was observed at 7.2pH beyond which there was a significant decrease in oxidation peak current which indicates the proton involvement in the DA redox reaction [9]. Fig. S3(c) shows the effect of pH on the oxidation potential of DA with a linear regression equation as $y = 0.0395x-0.976(R^2=0.997)$ with a slope of 39mV/pH which confirms the equal number of electrons and proton in the DA redox reaction. Additionally, the optimized 7.2 pH mimics the biological conditions, hence it was used as supporting electrolyte for all successive experiments.

Figure S3: (a) CV of NaNbO₃/GCE electrode in 0.1 M PBS at different pH levels; (b) Effect of pH on the oxidation peak current (c) Effect of pH on the oxidation potential

Table S.1 Interference study of NaNbO₃/GCE towards DA sensing with possible interfering species.

S.No.	Interference	Concentration µM	Change in peak current (%)
1.	AA	40	3.36
2.	UA	40	1.93
3.	Na+	40	1.58
4.	Cl-	40	1.64
5.	Ca	40	1.30
6.	Glucose	40	4.98

References

- R. F. Brandão, R. L. Quirino, V. M. Mello, A. P. Tavares, A. C. Peres, F. Guinhos, J.
 C. Rubim and P. A. Suarez, *J. Braz. Chem. Soc.*, 2009, **20**(5), 954-966.
- [2] S. Venkataraj, R. Drese, C. Liesch, O. Kappertz, R. Jayavel and M. Wuttig, J. Appl. Phys., 2002, 91(8), 4863-4871.
- [3] S. Li, Q. Xu, E. Uchaker, X. Cao and G. Cao, *CrystEngComm*, 2016, 18(14),2532-2540.
- [4] R. R. Pereira, F. T. Aquino, A. Ferrier, P. Goldner and R. R. Gonçalves, J. Lumin., 2016, 170, 707-717.
- [5] X. Jin, C. Liu, J. Xu, Q. Wang and D. Chen, RSC Adv., 2014, 4(67), 35546-35553.
- [6] T. Athar, A. Hashmi, A. Al-Hajry, Z. A. Ansari and S. G. Ansari, J. Nanosci. Nanotechnol., 2012, 12(10), 7922-7926.
- [7] L. Yan, G. Chen, S. Sarker, S. Richins, H. Wang, W. Xu, X. Rui and H. Luo, ACS Appl.
 Mater. Interfaces, 2016, 8(34), 22213-22219.
- [8] A. K. Das, M. Srivastav, R. K. Layek, M. E. Uddin, D. Jung, N. H. Kim and J. H. Lee, J. Mater. Chem., 2014, A 2(5), 1332-1340.
- [9] X. Ma, M. Chao and Z. Wang, Anal. Methods, 2012, 4, 1687-1692.