Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

Mechanistic and thermodynamical aspects of pyrene based fluorescent probe to detect picric acid

Bidyut Kumar Kundu,^a Pragti,^a Reena,^a Shaikh M. Mobin^a and Suman Mukhopadhyay^{*a,b}

^aDiscipline of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India. Tel: +91 731 2438 735 Fax: +91 731 2361 482

^bDiscipline of Biosciences and Biomedical Engineering, School of Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India.

*Contact E-mail: suman@iiti.ac.in; Fax: +91 731 2361; Tel: +91 731 2438 735

Table of Contents

List of Acronyms	ESI 2
Experimental Section	ESI 3-6
List of Figures	ESI 7-18
List of Tables	ESI 19-23
References	ESI 24

List of Acronyms

Entry	Significance	Entry	Significance
РТС	(2 <i>E/Z</i>)-2-(9- P yrenylmethylene)hydrazide-2- Thiophene C arboxylic acid	PL/ FL	Photo luminance/ Fluorescence
ESIPT	Excited state intra/ intermolecular proton transfer	Aq.	Aqueous
DFT/ TDDFT	Density functional Theory/ Time dependent density functional Theory	FRET	Fluorescence resonance energy transfer
NMR	Nuclear magnetic resonance	XRD	X-ray diffraction
ESI-MS	Electrospray ionization mass spectrometry	UV-Vis	Ultraviolet-Visible
FTIR	Fourier transformed infra-red	Conc.	Concentration
nM	Nano molar	h/ hrs.	Hour/ Hours
LOD	Limit of detection/ detection limit	r.t.	Room temperature
CHEF	Chelation-enhanced fluorescence	equiv.	Equivalents
MLCT	Metal to ligand charge transfer	eqn.	Equation
PET	Photo induced electron/energy transfer	ns/ min	Nano seconds/ minutes
HPLC	High performance liquid chromatography	[M ⁿ⁺]	Concentration of metal
TCSPC	Time-correlated single photon counting	AIE	Aggregation Induced Emission
LUMO	Lowest unoccupied molecular orbital	НОМО	Highest occupied molecular orbital
$\lambda_{\text{ex or}} \lambda_{\text{em}}$	Excitation or emission wavelength maximum	ІСТ	Intramolecular charge transfer
NACs	Nitro aromatic compounds	ACN	Acetonitrile

Experimental Section

Section S1. Materials

All reagents and solvents were purchased from commercial sources and used as received unless stated otherwise. Mili-Q water was used throughout the experiment. The solutions of the metal ions were prepared from their nitrate and chloride salts.

Section S2. Apparatus and Procedures

Absorption spectra were performed on a Varian UV-Vis spectrophotometer (Model: Cary 100). Fluorescence emission spectra were recorded at 25.0 ± 0.2 °C on a Fluoromax-4p spectrofluorometer from Horiba JobinYvon (Model: FM-100) using a quartz cuvette with a path length of 2 cm. ¹H and ¹³C NMR spectra were recorded on an AVANCE III 400 Ascend Bruker BioSpin machine at ambient temperature with tetramethylsilane (TMS, 0.00 ppm) as an internal standard. Elemental analysis was recorded on a ThermoFlash 2000 elemental analyzer. ESI-Mass spectra were recorded on a Bruker micrOTOF-Q II by positive-mode electrospray ionization. Infrared spectra (4000 to 500 cm⁻¹) were recorded with a BRUKER TENSOR 27 instrument in KBr pellets. A HORIBA Jobin Yvon picosecond time-correlated single photon counting (TCSPC) spectrometer (model Fluorocube-01-NL) was used for recording PL decays. The samples were excited at 405 nm by a picoseconds diode laser (model Pico Brite-405L) at a magic angle of 54.7° by a photomultiplier tube (TBX-07C) to collect the PL decays. The instrument response function (IRF, FWHM ~140 ps) was recorded using a dilute scattering solution, and IBH DAS 6.0 software was used to analyze the PL decays by the iterative reconvolution method. The goodness of the fit was judged by reduced χ -square (χ^2) value. Hand held camera was used to take the photos of UV-chamber as well as in day light.

Section S3. Preparation of Solutions for photophysical measurements

• UV-visible and fluorescence titration

To record UV-vis spectra, 1.0 mM solution (stock solution) was prepared by dissolving 0.01 mmol of chemosensor PTC (3.54 mg) in 10 mL of acetonitrile, followed by dilution to get 0.04 mM of working solution. 40 μ L of working solution was taken and diluted up to 2 mL to get 0.08 μ M solution.

Additionally, 0.1 mmol of Cu(NO₃)₂.3H₂O (24.1 mg) was dissolved in deionized H₂O (10 mL) to obtain a 10 mM solution. All the metal ions are added such a way that the conc. of overall solution during experiments become 0.8 μ M. After mixing both the solution of chemosensor and metal ion, it was shaked for one minute and UV-visible spectra of the resultant solution were recorded.

Similar procedure was followed for the preparation of explosive material's solution using water and sometimes-other polar solvents according to the experimental requirement. Furthermore, the concentration of PTC sometimes selectively chosen according the experimental requirement during PL spectroscopy.

• Determination of association constant

Benesi-Hildebrand (B-H) plot was used to evaluate the binding constants of the corresponding metal complexes using the following eqn. s(i):¹

 $1/(F - F_0) = 1/\{K(F_{max} - F_0)C\} + 1/(F_{max} - F_0) \dots \dots S(i)$

Where, F_0 is the FL intensity of probe PTC at the emission maximum (λ_{ex} = 368 nm, λ_{em} = 425 nm). F is the value of various concentration dependent wavelength emission maximum, the maximum emission intensity is denoted by F_{max} , the ratio of intercept to slope after fitting into the linear plot gives the value of K i.e. the binding constant (M^{-1}), and C denotes the conc. of the Cu²⁺ utilized throughout the series of titration. The Benesi-Hildebrand plot of (F_{max} - F_0)/ (F - F_0) vs. 1/ [Cu²⁺] gives the value of binding constant.

• Limit of Detection (LOD) for PA

Eqn. S(ii) was used to calculate the LOD value based on the fluorescence emission for PA.²

Detection limit (DL) = $3\sigma/k$... s(ii)

Where, σ stands for the standard deviation (S_d) of the blank measurement, and k denotes the slope. Slope is obtained from the linear fit plot of FL intensity changes versus concentration of PA or Cu²⁺ added to the probe at a particular wavelength.

• Calculation of Excited-State Lifetimes

Equations s(iii) and s(iv) were fitted to get an idea about the time-resolved emission decays where the decays of the compounds were evaluated using a tri-exponential function:³

$$F(t) = \sum_{i=1}^{2} a_i \exp\left(-\frac{t}{\tau_i}\right)$$
 ... s(iii)

Where, F(t) is the FL decay at normalized condition, α_i is the pre-exponential factor, and a_1 and a_2 denotes the normalized amplitude having decay component τ_1 and τ_2 respectively. Eqn. (iv) gives the value of average lifetime (in ns):

$$\langle \tau \rangle = \sum_{i=1}^{2} a_i \tau_i$$
 ... s(iv)

Where, a_i is the contribution of the ith decay component, and $a_i = \alpha_i / \Sigma \alpha_i$.

• Fluorescence Quantum Yield

Coumarin 152 dye ($\Phi_R = 0.09$ in metanol) was used as reference to estimate the quantum yield (QY) values of different analytes⁴ by using the eqn. s(v):⁵

$$\Phi_{s} = \frac{Abs_{R}}{Abs_{S}} \times \frac{Area_{S}}{Area_{R}} \times \frac{\eta_{S}}{\eta_{R}} \times \Phi_{R} \qquad \dots \qquad \dots \qquad S(v)$$

Where ' Φ ' denotes the fluorescence QY, 'Area' terms denote the integration of the fluorescence curve, 'Abs' denotes optical density and the refractive index as ' η ' (η = 1.3284 for MeOH solvent medium). Subscripts 'R' and 'S' stand for the respective parameters belonging to the experimental reference as well as the sample.

• Density Functional Theory (DFT)

For better understanding about the favorable pathways for the formation of metal complexes, MO based geometries and energies were calculated by using the Gaussain-09 programs.⁶ Restriction free Gas phase geometries for compounds and the sensing mechanism were fully optimized under symmetrical conditions. The singlet ground states (S₀) of PTC and complexes were optimized using DFT methods by mixing the Hartree-Fock-type theory with Becke's three parameterized Lee-Yang-Parr (B3LYP)⁷ exchange functional with the 6-31G basis set.^{8, 9} Furthermore, TDDFT method has been utilized by incorporating CAMB3LYP/ 6-31+G to correlate the theoretical and experimental observation for the electronic spectra.¹⁰

Section S4. Synthesis of PTC [(2*E/Z*)-2-(9-Pyrenylmethylene)hydrazide-2-ThiopheneCarboxylic acid)]

The solution of thiophene-2-carboxylic hydrazide (2 mmol = 284 mg) in MeOH (10 mL) was added to a methanolic solution (30 mL) of pyrene-1-carboxaldehyde (2 mmol = 460 mg). The mixture was then refluxed for 8 h at 70 °C followed by the filtration ad washed through MeOH and diethylether. The solid crystalline residue was dried over vacuum and collected for further characterization. X-ray diffraction suitable deep yellow colored single crystals were obtained after 9 days by slow evaporation in DMF solvent at room temperature.

Yield: 92% (orange solid), M.p. 265-268 °C. ¹H NMR (400.13 MHz, 298K, D₆-DMSO, δ ppm, E:Z = 1.4:1) : δ (E-isomer) = 7.29 (1H, t, Py-H), 7.99 (1H, d, Th-CH), 8.14 (2H, d, Py-H), 8.28 (2H, d, Py-H), 8.37 (4H, d, Py-H), 8.56 (1H, t, Th-CH), 8.83 (1H, d, Th-CH), 9.48 (1H, s, Py-CH=N), 12.07 (1H, s, exchangeable C=O-NH) ppm; (Z-isomer) = 7.27 (1H, t, Th- Py-H), 7.92 (1H, d, Th-CH), 8.10 (2H, d, Py-H), 8.21 (2H, d, Py-H), 8.36 (4H, d, Py-H), 8.55 (1H, t, Th-CH), 8.73 (1H, d, Th-CH), 9.27 (1H, s, Py-CH=N), 11.96 (1H, s, exchangeable C=O-NH) ppm (Fig. S1a); ¹³C NMR (100.61 MHz, 298 K, D₆-DMSO, δ ppm): (E/Z-isomer) = δ 124, 126, 127, 128, 129, 130, 131, 132, 135, 142, 146, 158, 161 (Fig. S1b). FT-IR (KBr, cm⁻¹): 3220 and 3063 (N-H), 1635 (C=O), 1560 (C=N) (Fig. S2). Anal. Calcd (%) for C₂₂H₁₄N₂OS: C, 74.55; H, 3.98; N, 7.90; O, 4.51; S, 9.05. Found: C, 74.29; H, 3.57; N, 7.94; S, 8.93 %. HRMS in HPLC MeOH (+, m/z): (C₂₂H₁₄N₂OS + Na)⁺: 377.0719 (100%) (Fig. S3).

Section S5. Description of Single Crystal XRD Analysis

Yellowish block like single crystals suitable for X-ray analysis of chemosensor, PTC were obtained from DMF within four days. The structure elucidation reveals monoclinic space group of the compound (P 21/c). The crystallized compound with approximate dimension of 0.330 x 0.260 x 0.210 mm, was used to measure the X-ray intensity data. The Bruker SAINT Software package¹¹ were used to integrate the data of a monoclinic unit cell generating a total no. of 15958 reflections using a maximum θ angle of 25.24°, of which 4083 were independent.

The final cell constants of <u>a</u> = 13.6604(4) Å, <u>b</u> = 10.0147(3) Å, <u>c</u> = 12.6251(3) Å, α = 90°, β = 99.643(3)°, γ = 90°, volume = 1702.77(8) Å³. The Multi-Scan method (SADABS) was introduced to correct the data effects for absorption. The ratio of minimum to maximum apparent transmission was 0.69668. The structure was solved and refined using the Bruker SHELXTL Software Package¹², giving the molecular formula, C₂₂H₁₄N₂OS. The final anisotropic full-matrix least-squares refinement on F² [30] with 235 variables converged at R1 = 8.49%, for the observed data and wR2 = 24.67% for all data. The goodness-of-fit was 1.083. On the basis of the final model, the calculated density was 1.382 Mg/m³ and F(000), 736 e⁻.

Caution! NACs are extremely explosive in nature and should be handled carefully and in small amounts. The explosives were handled as dilute solutions and with safety measures to avoid explosion. Use of fume hood is mandatory for each solution preparation!

ESI 7

Fig. S1 (a) ¹H NMR and (b) ¹³C NMR of PTC in DMSO-d6 at 298K

Fig. S2 FTIR stretching frequencies of PTC, PA, and the mixture of PTC and PA (in KBr pallet)¹³

Fig. S3 HRMS of chemosensor, PTC in MeOH

Fig. S4 Supramolecular interactions operating in chemosensor PTC: (a) intermolecular hydrogen bonding through two discrete molecules of PTC viz. N1-H1N...C5-O1, (b) extensive 1D polymer by H-bonding as well as CH- π interactions, (c) 2D framework via H-bonding, CH- π , and π - π interactions, and (d) side view of (c).

Fig. S5 Solvent dependent absorption properties of probe PTC (0.08 μ M concentration of each solution).

Fig. S6 The sensing behavior of PTC (0.08 μ M) with different metal ions (0.8 μ M), viz., Al³⁺, Cr³⁺, Mn²⁺, Fe³⁺, Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Cd²⁺, Gd³⁺, Hg²⁺, Pb²⁺, Pd²⁺, Li⁺, Na⁺, K⁺, Mg²⁺, and Ba²⁺, as its nitrate salt was investigated in acetonitrile-water by UV-visible measurements.

Fig. S7 Naked eye distinction of (a) PTC and PTC + Cu^{2+} under ultraviolet light, and (b) paper strip test of picric acid in both PTC and PTC + Cu^{2+} under visible and ultraviolet light.

Fig. S8 UV-visible spectroscopic titration of PTC (0.04 μ M) in the wide range of Cu²⁺ ion concentration (0.1-0.4 μ M) in CH₃CN solvent.

Fig. S9 Concentration dependent photoluminescence spectra of PTC (0-307.5 nM).

Fig. S10 (a) Selective fluorescence profile of PTC (0.1 μ M in acetonitrile) and with other metal ions (1.0 μ M). (b) Benesi-Hildebrand (B-H) plot for the determination of association constant (K_a in M⁻¹) through FL spectroscopy. (c) Determination of LOD value for Cu²⁺ detection.

Fig. S11 Absorption spectra of PTC after addition of various nitro explosives (0.08 μ M in acetonitrile solvent). Entry sequences from top to bottom: probe (PTC), PTC + p-nitrophenol (p-NP), PTC + p-nitrobenzylbromide (p-NNB), PTC + o-nitrophenol (o-NP), PTC + nitrobenzene (NB), PTC + m-nitrophenol (m-NP), PTC + p-chloronitrophenol (p-Cl-NP), PTC + 2,4-dinitrobenzene (2,4-DNB), PTC + 2,4-dinitrophenol (2,4-DNP), PTC + 2,4,6-trinitrophenol (PA).

Fig. S12 UV-visible titration of PTC (0.02 μ M in acetonitrile solvent) in presence of PA (0-0.0032 μ M). Inset: Absorbance spectra of PTC and PA (0.02 μ M in acetonitrile solvent).

Fig. S13 (a) Fluorescence quenching profile of 0.08 μ M of PTC in presence of various nitroaromatic explosives (NACs) having concentration of 50 nM. (b) Histogram for the interference of several NACs towards the detection of PA having emission at 425 nm.

Fig. S14 (a) Benesi-Hildebrand (B-H) plot for the determination of association constant (K_a in M⁻¹) through UV-Vis titration method, and (b) corresponding online fitted data having error < 3% *via* 'BindFit v0.5- Supramolecular' server.

Fig. S15 (a) Stern-Volmer plot presenting linearity at higher concentration of PA, and (b) Plot of the intensity a mixture of sensor PTC (F-FO) and [PA] in acetonitrile; where F is the fluorescence intensity of PTC upon gradual addition of PA, FO is the initial FL intensity in absence of PA, and [PA] is the molar concentration of picric acid. LOD was calculated as per reported literature.¹⁴

Fig. S16 ¹H NMR chart (400.13 MHz, 298K, D₆-DMSO, 0.5 mL, δ ppm) of PTC (5 mg) by varying the concentration of Cu²⁺ ion.

Fig. S17 Different region (shielding and deshielding) of ¹H NMR spectra (400.13 MHz, 298K, D₆-DMSO, 0.5 mL, δ ppm) of PTC (5 mg) by varying the concentration of PA.

Fig. S18 ESI-MS spectra showing complex formation equilibrium during titration of PTC with Cu²⁺ ion in HPLC acetonitrile medium.

Fig. S19 Solid state identification of some NACs through paper strip experiment. (a) Blank strip, (b) PTC strip, (c) PTC strip including solid state explosives, (d) PTC strip excluding solid state explosives. Images were taken after in contact with PTC-explosives for 60 seconds. (Significance: PA = picric acid, 4-NP = p-nitrophenol, m-OH NB = m-hydroxy nitrobenzene).

Fig. S20 Geometry optimized structures, HOMO-LUMO energy levels, band gaps, and the molecular orbital plots of PTC, PA, Picrate, and PTC-PA. All the energies are given in electron volt unit.

Chemical formula	C ₂₂ H ₁₄ N ₂ OS	C ₂₂ H ₁₄ N ₂ OS				
Formula weight	354.41 g/mol					
Temperature	293(2) К					
Wavelength	0.71073 Å					
Crystal size	0.330 x 0.260 x 0.210 mm					
Crystal habit	yellowish block					
Crystal system	Monoclinic					
Space group	P 21/c					
	a = 13.6604(4) Å α = 90°					
Unit cell dimensions	b = 10.0147(3) Å	$\beta = 99.643(3)^{\circ}$				
	c = 12.6251(3) Å	γ = 90°				
Volume	1702.77(8) Å ³					
Z, Density (calculated)	4, 1.382 Mg/m ³					
Absorption coefficient	0.203 mm ⁻¹					
F(000)	736					
Theta range for data	2.876 to 29.009°					
collection						
Index ranges	-18<=h<=18, -13<=k<=8,	, -16<=l<=16				
Absorption correction	Semi-empirical from equ	uivalents				
Max. and min. transmission	0.8390 and 0.7420					
Refinement method	Full-matrix least-squares	s on F ²				
Final R indices	R1 = 0.0849, wR2 = 0.2467					
Goodness-of-fit on F ²	1.083					
Data/ restraints/ parameters	4083 / 0 / 235					
CCDC no.	1861748					

Table S1. Crystal structure and data refinement for probe PTC

Bond	Length (in Å)	Angles	in deg
S(1)-C(1)	1.681(5)	C(1)-S(1)-C(4)	91.9(2)
S(1)-C(4)	1.711(3)	C(5)-N(1)-N(2)	121.5(3)
O(1)-C(5)	1.243(4)	C(5)-N(1)-H(1N)	119.3
N(1)-C(5)	1.355(4)	N(2)-N(1)-H(1N)	119.3
N(1)-N(2)	1.369(3)	C(6)-N(2)-N(1)	115.6(3)
N(1)-H(1N)	0.8600	C(2)-C(1)-S(1)	113.4(4)
N(2)-C(6)	1.283(4)	S(1)-C(1)-H(1)	123.3

Table S2. Selective bond lengths and bond angles for PTC

Table S3. Summary of solvent dependent absorption maximum and molar extinction coefficient (0.08 μ M concentration of each solution)

Entry	Solvent	λmax (nm)	λex (nm) / OD Value	logɛ
01	Acetone	237, 311, 369, 400	369 / 0.87585	9.0394
02	Acetonitrile	274, 368, 400	368 / 0.81494	9.0081
03	Chloroform	225, 269, 377, 405	377 / 0.86612	9.0345
04	Dichloromethane	221, 266, 374, 402	374 / 0.96177	9.0799
05	Dimethylformamide	280, 375, 403	375 / 0.90657	9.0544
06	Dimethylsulfoxide	280, 381, 405	381 / 0.90276	9.0525
07	Ethyl Acetate	234, 273, 368, 400	368 / 1.10049	9.1385
08	Ethanol	272, 374, 403	374 / 0.97211	9.0847
09	Methanol	267, 371, 403	371 / 0.99147	9.0932
10	PBS Buffer	262, 386, 421	386 / 0.34839	8.6389
11	Water	260, 371, 403	371 / 0.40625	8.7058

Table S4. Lifetime decay parameters of sensor PTC upon addition of PA and Cu²⁺ ion

System	τ ₁ (ns)	α1	τ ₂ (ns)	α2	τ₃ (ns)	α3	<τ> (ns)	χ²
PTC	0.19	0.28	0.38	0.71	0.77	0.01	0.093	1.15
PTC + Cu ²⁺	0.29	0.24	0.58	0.02	1.17	0.74	0.140	1.13
PTC-PA	0.007	0.73	0.15	0.27	0.30	-	0.074	1.06

Table S5. The calculated Stern-Volmer quenching constant (K_{SV} in acetone, M⁻¹), and thermodynamics parameters, such as, standard enthalpy change (ΔH in kJ mol⁻¹), standard entropy change (ΔS in kJ mol⁻¹ K⁻¹), and standard Gibbs free energy change (ΔH in kJ mol⁻¹) of the PTC-PA adduct.

т (к)	K _{sv} (×10 ⁷) (M ⁻¹)	∆H (kJ mol ⁻¹)	∆S (kJ mol ⁻¹ K ⁻¹)	∆G (kJ mol⁻¹)
288	1.13 ± 0.02	-81.77	133.89	-120.33
298	1.92 ± 0.10			
308	2.22 ± 0.10			-123.0

Table S6. DFT outcomes and optical properties of PTC, PTC+Cu²⁺, and PTC-PA.

Compound	E ^a (Hartrees)	HOMO ^b (eV)	LUMO ^b (eV)	ΔE ^b (eV)	ΔE ^c (eV)	λ _{max} d (nm)		λ _{em} e (nm)	Ф _f ^f
						Thr.	Exp.	-	
РТС	-1429.398	-5.35	-2.12	3.20	3.04	346	368	425	0.007
РТС-РА	-2350.039	-6.35	-3.73	2.62	2.77	337	344	462	-

^a Overall energy (a.u.)

^b Different MOs and energy gaps are interpreted *via* B3LYP/6-31G of Gauss 09 software

^c Optical band gap (where, $\Delta E = LUMO-HOMO$) calculated by UV-visible spectra

^d Theoretical (CAMB3LYP/6-31+G) and experimental wavelength maximum (in nm)

^e Experimental emission wavelength maximum (in nm)

^fQuantum yield (Φ_f of standard Coumarin 152 = 0.09 in MeOH)

Entry	Probe	Solvent	λ _{ex} / λ _{em} (nm)	LOD	Ka/Kd/ Ksv [†]	Ref.
1		Toluene, CH₃CN	342/ 377, 398	576 ppb	K _a = 6.58 × 10 ⁴ M ⁻¹	15
2		methanol	345/ 480	1.0 × 10 ⁻⁶ M	K _d = 6.58 × 10 ⁻⁴ M	16
3		THF- HEPES (1/9, v/v, pH=6.99)	342/ 380- 399	1.93 ppb	-	17
4		Ethanol	334/ 393	3.11 ppm	K _{SV} = 1041 M ⁻¹	
5		Ethanol	362/ 391	3.09 ppm	K _{SV} = 2720 M ⁻¹	18
6		Ethanol	344/ 398	2.89 ppm	K _{sv} = 677 M ⁻¹	

Table S7. Comparison of LOD and binding constant values of some pyrene based picric acid sensor

† Association/ Dissociation/ Stern-Volmer Constant

P* = Present work

References

- 1. S. Guha, S. Lohar, A. Banerjee, A. Sahana, I. Hauli, S. K. Mukherjee, J. S. Matalobos and D. Das, *Talanta*, 2012, 91, 18-25.
- 2. B. K. Kundu, R. Singh, R. Tiwari, D. Nayak and S. Mukhopadhyay, *New J. Chem.*, 2019, 43, 4867-4877.
- 3. A. Bhattacharya, R. Prajapati, S. Chatterjee and T. K. Mukherjee, *Langmuir*, 2014, 30, 14894-14904.
- 4. P. Dahiya, M. Kumbhakar, T. Mukherjee and H. Pal, *Chem. Phys. Lett.*, 2005, 414, 148-154.
- 5. A. T. R. Williams, S. A. Winfield and J. N. Miller, *Analyst*, 1983, 108, 1067-1071.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Wallingford, CT, 2016.
- 7. C. Lee, W. Yang and R. G. Parr, *Physical Review B*, 1988, 37, 785-789.
- 8. H. Guo, Y. Jing, X. Yuan, S. Ji, J. Zhao, X. Li and Y. Kan, *Organic & Biomolecular Chemistry*, 2011, 9, 3844-3853.
- 9. B. K. Kundu, R. Ranjan, A. Mukherjee, S. M. Mobin and S. Mukhopadhyay, *J. Inorg. Biochem.*, 2019, 195, 164-173.
- 10. M. Cossi, N. Rega, G. Scalmani and V. Barone, J. Comput. Chem., 2003, 24, 669-681.
- 11. SAINT V8.34A; Bruker AXS Inc., 2013.
- 12. SHELXTL -2014/7; Bruker AXS Inc., 2014.
- 13. B. Kumar Kundu, V. Chhabra, N. Malviya, R. Ganguly, G. S. Mishra and S. Mukhopadhyay, *Micropor. Mesopor. Mat.*, 2018, 271, 100-117.
- 14. B. K. Kundu, P. Mandal, B. G. Mukhopadhyay, R. Tiwari, D. Nayak, R. Ganguly and S. Mukhopadhyay, *Sensors and Actuators B: Chemical*, 2019, 282, 347-358.
- 15. R. Sodkhomkhum, M. Masik, S. Watchasit, C. Suksai, J. Boonmak, S. Youngme, N. Wanichacheva and V. Ervithayasuporn, *Sensors and Actuators B: Chemical*, 2017, 245, 665-673.
- 16. L. Ding, Y. Bai, Y. Cao, G. Ren, G. J. Blanchard and Y. Fang, *Langmuir*, 2014, 30, 7645-7653.
- 17. R. Chopra, P. Kaur and K. Singh, *Anal. Chim. Acta*, 2015, 864, 55-63.
- 18. S. Sriyab, K. Jorn-lat, P. Prompinit, P. Wolschann, S. Hannongbua and S. Suramitr, *J. Lumin.*, 2018, 203, 492-499.
- 19. A. Bajpai, A. Mukhopadhyay, M. S. Krishna, S. Govardhan and J. N. Moorthy, *IUCrJ*, 2015, 2, 552-562.
- 20. A. F. Khasanov, D. S. Kopchuk, I. S. Kovalev, O. S. Taniya, K. Giri, P. A. Slepukhin, S. Santra, M. Rahman, A. Majee, V. N. Charushin and O. N. Chupakhin, *New J. Chem.*, 2017, 41, 2309-2320.