Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

First Aromatic Amine Organocatalysed Activation of α,β-Unsaturated Ketones

Isaac G. Sonsona,^[a] Eugenia Marqués-López,^[a] M. Concepción Gimeno^[b] and Raquel P. Herrera*^[a]

^[a] Laboratorio de Organocatálisis Asimétrica, Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) (CSIC-Universidad de Zaragoza), C/ Pedro Cerbuna 12, E-50009 Zaragoza (Spain). <u>raquelph@unizar.es</u>

^[b] Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) (CSIC-Universidad de Zaragoza), C/ Pedro Cerbuna 12, E-50009 Zaragoza (Spain).

Supporting Information Table of Contents

1. General Information	S2
2. Synthesis of benzylideneacetone derivatives 1b-f	
3. Screening of the reaction conditions	
4. ¹ H-NMR spectra of starting materials 1b-f	
5. ¹ H-NMR and ¹³ C-NMR (APT) spectra of products 3d,k	S10
6. Chiral HPLC analysis of compounds 3a-1	

1. General Information

Starting materials **1a** and **2a-d**, as well as the amine catalysts **I-IX**, are commercially available and were employed as received without further treatment or purification. In case of solvent, commercial tetrahydrofuran (THF, HPLC grade) was transferred to a new recipient and molecular sieves (4 Å) were added.

All reactions were performed at room temperature under ambient conditions. The reactions were monitored by thin-layer chromatography (TLC) using aluminum sheets recoated with silica gel and a fluorescent indicator (60 F_{254} , 0.2 mm). The compounds were visualized at 254 nm by employment of UV light. The products **3** were isolated by flash chromatography using silica gel (0.06-0.2 nm) as stationary phase and mixtures of commercial dichloromethane/ethyl acetate as eluent.

The chiral HPLC analysis of products **3** was performed in a Waters 600 equipment, using a Daicel ChiralPak IC column as stationary phase and mixtures of commercial *n*-hexane/isopropyl alcohol as eluent. The specific rotation of products **3** was determined using a Jasco P-1020 polarimeter, in acetonitrile or tetrahydrofuran (both HPLC grade) as solvent. The absolute configuration of products $3a^1$ and $3d^2$ was assigned comparing their specific rotation with those reported in the literature. The same absolute configuration is assumed for the rest of products **3**.

The ¹H-NMR and ¹³C-NMR (APT) spectra of reagents and products were recorded at 300 MHz (Bruker ARX300 spectrometer) or 400 MHz (Bruker AV400 spectrometer), in chloroform-*d* (CDCl₃) or dimethyl sulfoxide-*d*₆ ((CD₃)₂SO) as deuterated solvent. Infrared spectra of starting materials and products were obtained employing an attenuated total reflection infrared (ATR-FTIR) in a PerkinElmer FTIR spectrometer equipped with a universal ATR sampling accessory. The HRMS analysis of reagents and products was performed using a MicroTof-Q mass spectrometer and electrospray (ESI) as ionization method. Melting point of reagents and products was determined employing a Gallenkamp MPD 350 BM 2.5 device.

The spectroscopic data recorded for synthetized starting materials 1b,³ 1c,³ 1d,³ 1e,³ and 1f,³ as well as products obtained 3a,⁴ 3b,⁴ 3c,^{1b} 3e,^{1b} 3f,⁵ 3g,⁶ 3h,⁷ 3i⁶ and 3j⁶ are in agreement with values previously reported by other authors.

¹ a) West, B. D.; Preis, S.; Schroeder, C. H.; Link, K. P. J. Am. Chem. Soc. **1961**, 83, 2676-2679; b) Shi, T.; Guo, Z.; Yu, H.; Xie, J.; Zhong, Y.; Zhu, W. Adv. Synth. Catal. **2013**, 355, 2538-2543.

² Dong, Z.; Wang, L.; Chen, X.; Liu, X.; Lin, L.; Feng, X. Eur. J. Org. Chem. 2009, 5192-5197.

³ Stern, T.; Rückbrod, S.; Czekelius C.; Donner, C.; Brunner, H. Adv. Synth. Catal. 2010, 352, 1983-1992.

⁴ Halland, N.; Hansen, T.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2003, 42, 4955-4957.

⁵ Yang, H.-M.; Li, L.; Jiang, K.-Z.; Jiang, J.-X.; Lai, G.-Q.; Xu, L.-W. *Tetrahedron* **2010**, *66*, 9708-9713.

⁶ Modrocká, V.; Veverková, E.; Mečiarová, M.; Šebesta, R. J. Org. Chem. 2018, 83, 13111-13120.

⁷ Xie, J.-W.; Yue, L.; Chen, W.; Du, W.; Zhu, J.; Deng, J.-G.; Chen, Y.-C. Org. Lett. 2007, 9, 413-415.

2. Synthesis of benzylideneacetone derivatives 1b-f

The substrates **1b-f** were synthetized from the corresponding commercial aldehydes **4b-f** and the phosphonium ylide **5**, which was previously prepared following the procedure reported in the literature using commercially available reagents.⁸ The respective yields after purification are collected in the Scheme S1. The ratio (E)/(Z) of products **1b-f** was determined by ¹H-RMN spectroscopy, using DMSO- d_6 as solvent.

Scheme S1. Synthesis of electrophiles 1b-f.

3. Screening of the reaction conditions

Table S1. Screening of the reaction conditions using catalyst VII.^a

$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
Entry	THF (µL)	Equiv. 1a	Equiv. 2a	VII	Yield $(\%)^b$	$ee (\%)^c$
1	200	1.2	1	20	19	68
2	200	1.2	1	10	10	68
3	200	1	1	10	13	70
4	200	1	1.2	10	15	68
5	200	1	1.5	10	20	68
6	200	1	2	10	22	67
7	200	1	1.5	20	58	66
8	200	1	2	20	30	68
9	100	1.2	1	20	12	66
10	100	1	1.5	20	66	63

⁸ Vicente, J.; Chicote, M. T.; Saura-Llamas, I. J. Chem. Ed. 1993, 70, 163-164.

11	100	1	2	20	68	64
12	100	1	1.2	10	42	64

^{*a*} To a mixture of catalyst **VII** (10-20 mol%) and coumarin **2a** (0.1-0.2 mmol) in THF (100-200 μ L), benzylideneacetone **1a** (0.1-0.12 mmol) was added at room temperature. ^{*b*} After isolation by column chromatography. ^{*c*} Determined by chiral HPLC analysis (Chiralpak IC, Hex:*i*PrOH 80:20, 1ml/min).

Table S2. Screening of solvents.

	CH ₃	+ () 2a	OH VII (10 mol%) 3 day, r.t.		`CH₃ h 3a
Entry	Equiv. 1a	Equiv. 2a	Solvent (200 μL)	Yield $(\%)^a$	$ee (\%)^b$
1	1.0	1.2	Toluene	n.r	n.d.
2	1.0	1.2	Acetonitrile	n.r.	n.d.
3	1.0	1.2	H_2O	n.r.	n.d.
4	1.0	1.2	Hexane	≥23	40
5	1.0	1.2	CH_2Cl_2	traces	n.d.
6	1.0	1.2	1,2-DCE	traces	n.d.
7	1.0	1.2	CHCl ₃	13	26
8	1.0	1.2	ClPh	traces	n.d.
9	1.0	1.2	1,2-(Cl) ₂ Ph	traces	n.d.
10	1.0	1.2	Diethyl ether	32	38
11	1.0	1.2	1,4-dioxane	traces	n.d.
12	1.0	1.2	AcOEt	traces	n.d.
13	1.0	1.2	DMF	≥5	44
14	1.0	1.2	iPrOH	36	44
^a After isolat	ion by column	chromatography	v. ^b Determined by chira	l HPLC analysis	(Chiralpak IC,

^a After isolation by column Hex:*i*PrOH 80:20, 1ml/min).

4. ¹H-NMR spectra of starting materials 1b-f

Figure S1. ¹H-NMR spectrum of compound 1b (400 MHz, DMSO-d₆)

Figure S2. ¹H-NMR spectrum of compound 1c (400 MHz, DMSO-d₆)

Figure S3. ¹H-NMR spectrum of compound 1d (400 MHz, DMSO-d₆)

Figure S4. ¹H-NMR spectrum of compound 1e (400 MHz, DMSO-d₆)

Figure S5. ¹H-NMR spectrum of compound 1f (400 MHz, DMSO-d₆).

5. ¹H-NMR and ¹³C-NMR (APT) spectra of products 3d,k

Figure S6. ¹H-NMR and ¹³C-NMR (APT) spectra of compound 3d.

Figure S7. ¹H-NMR and ¹³C-NMR (APT) spectra of compound **3**k.

6. Chiral HPLC analysis of compounds 3a-l

Figure S8. Racemic mixture of 3a. Daicel ChiralPak IC column (*n*-hexane/isopropyl alcohol = 80:20, 1 mL min⁻¹, λ = 282.5 nm).

Figure S9. Enantioenriched mixture of 3a (64% ee). Daicel ChiralPak IC column (*n*-hexane/isopropyl alcohol = 80:20, 1 mL min⁻¹, λ = 282.5 nm).

Figure S10. Racemic mixture of 3b. Daicel ChiralPak IC column (*n*-hexane/isopropyl alcohol = 80:20, 1 mL min⁻¹, $\lambda = 279.4$ nm).

Figure S11. Enantioenriched mixture of **3b** (64% ee). Daicel ChiralPak IC column (*n*-hexane/isopropyl alcohol = 80:20, 1 mL min⁻¹, λ = 279.4 nm).

		Processed Channel	Time (min)	Area	% Area	Height
Γ	1	PDA 279.4 nm	10.457	100487064	82.14	2821345
	2	PDA 279.4 nm	21.303	21852131	17.86	436846

Figure S12. Racemic mixture of 3c. Daicel ChiralPak IC column (*n*-hexane/isopropyl alcohol = 80:20, 1 mL min⁻¹, λ = 279.4 nm).

Figure S13. Enantioenriched mixture of 3c (66% ee). Daicel ChiralPak IC column (*n*-hexane/isopropyl alcohol = 80:20, 1 mL min⁻¹, λ = 279.4 nm).

	110000000 011011101	Time (min)	/ 100		noight
1	PDA 279.4 nm	11.715	135539213	82.90	1537290
2	PDA 279.4 nm	23.010	27960604	17.10	365809

Figure S14. Racemic mixture of 3d. Daicel ChiralPak IC column (*n*-hexane/isopropyl alcohol = 80:20, 1 mL min⁻¹, $\lambda = 250.0$ nm).

Figure S15. Enantioenriched mixture of 3d (50% ee). Daicel ChiralPak IC column (*n*-hexane/isopropyl alcohol = 80:20, 1 mL min⁻¹, λ = 250.0 nm).

	r recessed channel	Time (min)	Alou	7074100	noight
1	PDA 250.0 nm	20.769	50779910	75.00	671849
2	PDA 250.0 nm	26.503	16926677	25.00	190616

Figure S16. Racemic mixture of 3e. Daicel ChiralPak IC column (*n*-hexane/isopropyl alcohol = 80:20, 1 mL min⁻¹, $\lambda = 279.4$ nm).

Figure S17. Enantioenriched mixture of 3e (58% ee). Daicel ChiralPak IC column (*n*-hexane/isopropyl alcohol = 80:20, 1 mL min⁻¹, λ = 279.4 nm).

	Processed Channel	Time (min)	Area	% Area	Height
1	PDA 279.4 nm	17.251	79986114	78.88	1721727
2	PDA 279.4 nm	33.170	21420841	21.12	300879

Figure S18. Racemic mixture of 3f. Daicel ChiralPak IC column (*n*-hexane/isopropyl alcohol = 80:20, 1 mL min⁻¹, $\lambda = 272.2$ nm).

Figure S19. Enantioenriched mixture of 3f (67% ee). Daicel ChiralPak IC column (*n*-hexane/isopropyl alcohol = 80:20, 1 mL min⁻¹, λ = 272.2 nm).

	Processed Channel	Time (min)	Area	% Area	Height
1	PDA 272.2 nm	13.141	70400701	83.33	1825639
2	PDA 272.2 nm	18.330	14087249	16.67	327796

Figure S21. Enantioenriched mixture of **3g** (67% ee). Daicel ChiralPak IC column (*n*-hexane/isopropyl alcohol = 80:20, 1 mL min⁻¹, λ = 272.2 nm).

Figure S22. Racemic mixture of 3h. Daicel ChiralPak IC column (*n*-hexane/isopropyl alcohol = 80:20, 1 mL min⁻¹, $\lambda = 271.0$ nm).

Figure S23. Enantioenriched mixture of **3h** (61% ee). Daicel ChiralPak IC column (*n*-hexane/isopropyl alcohol = 80:20, 1 mL min⁻¹, λ = 271.0 nm).

Figure S24. Racemic mixture of 3i. Daicel ChiralPak IC column (*n*-hexane/isopropyl alcohol = 80:20, 1 mL min⁻¹, λ = 272.2 nm).

Figure S25 Enantioenriched mixture of **3i** (62% ee). Daicel ChiralPak IC column (*n*-hexane/isopropyl alcohol = 80:20, 1 mL min⁻¹, λ = 272.2 nm).

Figure S26. Racemic mixture of 3j. Daicel ChiralPak IC column (*n*-hexane/isopropyl alcohol = 80:20, 1 mL min⁻¹, $\lambda = 272.2$ nm).

Figure S27. Enantioenriched mixture of **3j** (62% ee). Daicel ChiralPak IC column (*n*-hexane/isopropyl alcohol = 80:20, 1 mL min⁻¹, λ = 272.2 nm).

177431

50765

80.88

19.12

PDA 272.2 nm

PDA 272.2 nm

1

2

12.232

19.390

11088569

2620682

Figure S28. Racemic mixture of 3k. Daicel ChiralPak IC column (*n*-hexane/isopropyl alcohol = 80:20, 1 mL min⁻¹, $\lambda = 272.2$ nm).

Figure S29. Enantioenriched mixture of **3k** (54% ee). Daicel ChiralPak IC column (*n*-hexane/isopropyl alcohol = 80:20, 1 mL min⁻¹, $\lambda = 272.2$ nm).

Figure S30. Racemic mixture of 31. Daicel ChiralPak IC column (*n*-hexane/isopropyl alcohol = 80:20, 1 mL min⁻¹, λ = 272.2 nm).

Figure S31. Enantioenriched mixture of **31** (54% ee). Daicel ChiralPak IC column (*n*-hexane/isopropyl alcohol = 80:20, 1 mL min⁻¹, $\lambda = 272.2$ nm).

