Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Electronic Supplementary Information

Further studies on the photoreactivities of ruthenium-nitrosyl complexes with terpyridyl ligands.

Isabelle Sasaki^{* a,b,c}, Silvia Amabilino ^{a,b}, Sonia Mallet-Ladeira ^{a,b}, Marine Tasse ^{a,b}, Alix Sournia-Saquet ^{a,b}, Pascal Lacroix ^{a,b}, Jsabelle Malfant^{* a,b}.

^a CNRS; LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, 31077 Toulouse, France

^b Université de Toulouse; UPS, INP, LCC, 31077 Toulouse, France

^c ISM (Institut des Sciences Moléculaires, UMR 5255), 351, cours de la libération, 33405 Talence Cedex, France

*corresponding authors: isabelle.sasaki@u-bordeaux.fr, isabelle.malfant@lcc-toulouse.fr

- Fig. S1: ¹H NMR of the ligand
- Fig. S2 : ¹³C NMR of the ligand
- Fig. S3: ¹H NMR of the crude reaction mixture in the synthesis of [1]⁺(PF₆)
- **Fig. S4** : ¹H NMR of [**1t**]⁺(PF₆)
- Fig. S5 : ¹³C NMR of [1t]⁺(PF₆)
- Fig. S6 : ESI mass spectrum of [1t]⁺(PF₆)
- **Fig. S7** : ¹H NMR of [**1c**]⁺(PF₆)
- Fig. S8 : ESI mass spectrum of [1c]⁺(PF₆)
- Fig. S9 : ¹H NMR of [2t]⁺(PF₆)
- **Fig. S10** : ¹³C NMR of [**2t**]⁺(PF₆)
- Fig. S11 : HR mass spectrum of of [2t]⁺(PF₆)
- **S1:** synthesis of [**3**]⁺(PF₆)
- **Fig. S12**: ¹H NMR of complex [**3t**]⁺(PF₆)
- Fig. S 13: Square-wave voltammograms of [1t]⁺(PF₆) and [1c]⁺(PF₆)
- **Fig. S14**: CV of $[2t]^+(PF_6)$ before and after irradiation with a Xenon lamp.
- Fig. S 15: Square-wave voltammogram of [2t]⁺(PF₆)
- Fig. S16: CV of the ligand NEt₂Phtpy
- Fig. S17: Evolution of the electronic spectrum of $[2t]^+(PF_6)$ during irradiation at 365 nm.
- Fig. S18: Absorption spectra of $[1t]^+(PF_6)$ and of the photoproduct $[4]^+(PF_6)$
- Table S1: DFT coordinates
- S2: Selection of the TD-DFT method for the computation of the UV-Vis spectra
- Table S2: Crystal data of complex [1c]⁺(CF₃CO₂)
- Table S3: Crystal data of complex [2t]⁺(PF₆)
- Table S4: Crystal data of complex [3]⁺(PF₆)
- Table S5: Crystal data of complex [4]⁺(PF₆)
- Table S6: Selected bond lengths and angles of $[1c]^+(PF_6)$ and of the photoproduct: $[4]^+(PF_6)$

Fig. S2 : 13 C NMR of the ligand in CDCl₃.

Fig. S3 : ¹H NMR (DMSO d6) of the crude reaction mixture in the synthesis of $[1]^+(PF_6)$: labels identify the different complexes: homoleptic (black spot), *cis* isomer (star) and *trans* isomer (white spot)

Fig. S4 : 1 H NMR of $[\mathbf{1t}]^{+}(PF_{6})$ in CD₃CN.

Fig. S5 : 13 C NMR of $[\mathbf{1t}]^+(PF_6)$ in CD₃CN.

Fig. S6 : ESI mass spectrum of [1t]⁺(PF₆)

Fig. S7 : 1 H NMR of $[\mathbf{1c}]^{+}(PF_{6})$ in CD₃CN.

Fig. S8 : ESI mass spectrum of [1c]⁺(PF₆)

Fig. S9: ¹H NMR of $[2t]^+(PF_6)$ in CD₃CN.

Fig. S10: ${}^{13}C$ NMR of [2t]⁺(PF₆) in CD₃CN.

Fig. S11 : HR ES mass spectrum of [2t]⁺(PF₆)

S1: synthesis of [3]⁺(PF₆)

To a dark-blue solution of about 10 mg of $[\mathbf{1t}]^+(\mathsf{PF}_6)$ in 1mL of MeCN in a a tube, were added 2 drops of nitric acid (65%). Instantaneously, the solution became colorless. The tube was left in a closed flask for diffusion with diethyloxide. After few days, brown crystals appeared and some of them were collected for ¹H NMR measurement.

Fig. S12: ¹H NMR of complex 3 (with zoom of the aromatic part as insert)

(b)

Fig. S13 : Square wave voltammograms in reduction for (a) $[1t]^+(PF_6)$ and (b) $[1c]^+(PF_6)$ before (in grey) and after irradiation (with a Xenon lamp (complex 1mM in MeCN), 0.1M (nBu₄)[PF₆]

Fig. S14: CV of $[2t]^+(PF_6)$ before (in grey) and after irradiation (with a Xenon lamp (complex 1mM in MeCN), 0.1M (nBu₄)[PF₆], working electrode Pt disk, scan 0.2 V/s

Fig. S15 : Square wave voltammograms in reduction for (a) $[2t]^+(PF_6)$ before (in grey) and after irradiation (with a Xenon lamp (complex 1mM in MeCN), 0.1M (nBu₄)[PF₆]

Fig. S16 : CV of ligand NEt₂Phtpy in MeCN, 0.1M (nBu₄)[PF₆], working electrode Pt disk, scan 0.2 V/s

Fig. S17 : Evolution of the electronic spectrum of $[2t]^+(PF_6)$ during irradiation at 365 nm.

Fig. S18 : Absorption spectra of $[1t]^+(PF_6)$ (blue) and of the photoproduct $[4]^+(PF_6)$ (orange)

Table S1: DFT coordinates

$[1c]^+$ cis(Cl,Cl)[(NEt₂Phtpy)RuCl₂(NO)]⁺

Ru	-3.081505	-0.008093	0.109561
Cl	-2.940018	0.163693	-2.245702
Ν	-1.110923	-0.007365	0.093639
С	-0.473600	-1.185342	-0.026583
С	-1.386751	-2.339056	-0.158755
Ν	-2.716091	2.042106	0.163314
Ν	-2.716436	-2.043851	-0.140404
С	-3.260390	-4.337598	-0.450410
Н	-4.027361	-5.094892	-0.564715
С	-0.473924	1.176002	0.135776
С	0.908256	1.202984	0.115018
Н	1.428850	2.149493	0.189844
С	-3.258729	4.356650	0.209394
Н	-4.025571	5.122636	0.216326
С	-1.386201	2.336486	0.183765
С	1.640924	-0.002186	0.030147
С	-0.962380	-3.651469	-0.318135
Н	0.095331	-3.886497	-0.332463
С	0.908544	-1.207837	-0.057578
Н	1.429018	-2.148449	-0.187450
С	-3.627427	-3.007688	-0.284378
Н	-4.662870	-2.685135	-0.265249
С	-3.626568	3.017150	0.172719
Н	-4.662547	2.696567	0.148682
С	-0.961058	3.657643	0.222439
Н	0.096856	3.891482	0.238110
С	-1.907734	4.677896	0.236702
Н	-1.586370	5.713747	0.266935
С	-1.909662	-4.660740	-0.464591
Н	-1.588749	-5.689463	-0.590694
Cl	-5.514668	0.013052	-0.098452
Ν	-3.344994	-0.137268	1.833572
0	-3.644831	-0.221404	2.926870
С	3.835789	-1.130809	0.423508
Н	3.323216	-2.016487	0.788298
С	5.214021	-1.137059	0.433514
Н	5.720466	-2.023275	0.796796
С	5.959866	-0.002200	0.018060
С	5.212950	1.131829	-0.397988
Н	5.718607	2.017619	-0.763381
С	3.834872	1.125956	-0.384617
Н	3.322493	2.011922	-0.748703
С	3.095335	-0.002128	0.021156
Ν	7.319446	-0.001034	0.018929
С	8.378597	-1.379749	1.803212
С	8.091971	-1.199160	0.316971
Н	8.987268	-2.275806	1.964381
Н	7.452791	-1.485765	2.378099

Н	8.927851	-0.519542	2.200994
Н	7.576799	-2.073891	-0.091624
Н	9.033642	-1.120727	-0.236845
С	8.381889	1.378437	-1.762647
С	8.090466	1.198569	-0.277251
Н	8.987706	2.276607	-1.922941
Н	7.457718	1.480126	-2.340962
Н	8.935830	0.519701	-2.157210
Н	7.571907	2.072535	0.128712
Н	9.030295	1.122537	0.279990

[1t]⁺ trans(Cl,Cl)[(NEt₂Phtpy)RuCl₂(NO)]⁺

С	3.029030	0.036504	3.646367
Н	2.740577	0.034558	4.690127
С	4.366331	0.049826	3.274057
Н	5.131963	0.059045	4.041174
С	4.685664	0.049947	1.922671
Н	5.720313	0.059378	1.596719
С	3.659129	0.036974	0.985394
Н	3.884381	0.035107	-0.074365
С	2.339172	0.025282	1.417842
С	1.177070	0.009167	0.516221
С	1.204948	0.013409	-0.864921
Н	2.155480	0.057927	-1.380947
С	0.000000	0.000000	-1.601941
С	-1.204948	-0.013409	-0.864921
Н	-2.155480	-0.057927	-1.380947
С	-1.177070	-0.009167	0.516221
С	-2.339172	-0.025282	1.417842
С	-3.659129	-0.036974	0.985394
Н	-3.884381	-0.035107	-0.074365
С	-4.685664	-0.049947	1.922671
Н	-5.720313	-0.059378	1.596719
С	-4.366331	-0.049826	3.274057
Н	-5.131963	-0.059045	4.041174
С	-3.029030	-0.036504	3.646367
Н	-2.740577	-0.034558	4.690127
Ν	2.041898	0.024867	2.744519
Ν	0.000000	0.000000	1.167696
Ν	-2.041898	-0.024867	2.744519
Cl	0.030934	-2.400829	3.020798
Ru	0.000000	0.000000	3.161429
С	-1.115097	0.439270	-3.796293
Н	-1.995454	0.818116	-3.285327
С	-1.122133	0.448017	-5.173933
Н	-2.013064	0.800223	-5.679638
С	0.000000	0.000000	-5.921029
С	1.122133	-0.448017	-5.173933
Н	2.013064	-0.800223	-5.679638
С	1.115097	-0.439270	-3.796293
Н	1.995454	-0.818116	-3.285327

С	0.000000	0.000000	-3.055126
Ν	0.000000	0.000000	-7.280079
С	-2.215965	-0.464672	-8.315586
С	-1.107645	0.547908	-8.051922
Н	-3.008236	-0.009828	-8.919537
Н	-2.658993	-0.821472	-7.380137
Н	-1.828019	-1.332361	-8.859939
Н	-1.500701	1.435640	-7.546759
Н	-0.692903	0.903167	-9.001011
С	2.215965	0.464672	-8.315586
С	1.107645	-0.547908	-8.051922
Н	3.008236	0.009828	-8.919537
Н	2.658993	0.821472	-7.380137
Н	1.828019	1.332361	-8.859939
Н	1.500701	-1.435640	-7.546759
Н	0.692903	-0.903167	-9.001011
Cl	-0.030934	2.400829	3.020798
Ν	0.000000	0.000000	4.920963
0	0.000000	0.000000	6.056970

[2t]⁺ trans(Cl,Cl)[((Et)(ON)NPhtpy)RuCl₂(NO)]⁺

С	3.519900	3.083632	0.167294
н	4.572209	2.829008	0.156955
С	3.105101	4.407386	0.235990
Н	3.848159	5.195175	0.280502
С	1.745066	4.684749	0.245740
Н	1.387044	5.707285	0.299147
С	0.839895	3.630667	0.185454
Н	-0.226440	3.822547	0.191861
С	1.314935	2.327638	0.117663
С	0.448301	1.141433	0.049286
С	-0.937518	1.127398	0.043906
Н	-1.491241	2.055415	0.114375
С	-1.621417	-0.097579	-0.016904
С	-0.865549	-1.280059	-0.068758
Н	-1.363173	-2.239101	-0.144876
С	0.518857	-1.211775	-0.057991
С	1.456197	-2.343618	-0.114702
С	1.062330	-3.673486	-0.177750
Н	0.009903	-3.930569	-0.186610
С	2.030290	-4.670656	-0.229824
Н	1.735364	-5.713345	-0.279787
С	3.370785	-4.311100	-0.216276
Н	4.160490	-5.052430	-0.254842
С	3.703653	-2.964196	-0.150040
Н	4.738204	-2.645088	-0.134819
Ν	2.650008	2.070675	0.110657
Ν	1.126211	-0.016039	-0.001474
Ν	2.773187	-2.006095	-0.100734
Cl	2.976584	0.168293	-2.387708
Ru	3.127688	0.044776	0.006227

С	-3.784478	-1.206734	0.568299
Н	-3.239663	-2.004489	1.064351
С	-5.166841	-1.256703	0.562307
Н	-5.682457	-2.088037	1.026056
С	-5.903576	-0.228467	-0.044286
С	-5.224470	0.839018	-0.641429
Н	-5.765449	1.650068	-1.114634
С	-3.837833	0.878708	-0.627133
Н	-3.339312	1.707496	-1.120693
С	-3.090470	-0.140478	-0.025002
Ν	-7.310355	-0.270255	-0.058813
Ν	-7.886572	-1.097776	0.817083
0	-9.106052	-1.104503	0.794164
С	-8.597186	1.842831	-0.303841
С	-8.132270	0.545573	-0.950635
Н	-9.225380	2.396673	-1.008260
Н	-7.753758	2.480588	-0.021709
Н	-9.187756	1.633084	0.592099
Н	-7.554883	0.723469	-1.859760
Н	-8.991815	-0.076003	-1.213310
Cl	2.967664	-0.088159	2.398673
Ν	4.885492	0.091096	0.009323
0	6.019987	0.113190	0.007467

[4]⁺ trans(Cl,Cl)[(NEt₂Phtpy)RuCl₂(MeCN)]⁺

С	3.440821	3.031503	0.052997
Н	4.479467	2.721435	0.053736
С	3.076624	4.371144	0.071004
Н	3.844915	5.135713	0.086464
С	1.725156	4.696527	0.067735
Н	1.405445	5.733295	0.080551
С	0.780358	3.676905	0.047204
Н	-0.277967	3.909947	0.043002
С	1.206129	2.353799	0.031072
С	0.296818	1.195731	0.007903
С	-1.087932	1.219621	0.013229
Н	-1.610201	2.167006	0.063288
С	-1.815277	0.012339	-0.006296
С	-1.077809	-1.192970	-0.027054
Н	-1.597410	-2.141776	-0.075933
С	0.304533	-1.165174	-0.022627
С	1.211355	-2.333929	-0.044061
С	0.770601	-3.650838	-0.066456
Н	-0.289608	-3.874665	-0.069590
С	1.705008	-4.682335	-0.084345
Н	1.371840	-5.714829	-0.102304
С	3.059646	-4.374924	-0.078485
Н	3.818502	-5.148841	-0.091450
С	3.438064	-3.038456	-0.054623
Н	4.479668	-2.738985	-0.048013
Ν	2.534308	2.050262	0.033564

Ν	0.945728	0.018236	-0.007159
Ν	2.543099	-2.048870	-0.038098
Cl	2.938723	0.082275	-2.360138
Ru	2.898415	0.015767	0.000366
С	-4.006203	-1.099025	0.470819
Н	-3.488843	-1.963994	0.876233
С	-5.385143	-1.112509	0.482456
Н	-5.885681	-1.994582	0.863519
С	-6.138064	-0.009628	0.000959
С	-5.397751	1.100144	-0.484665
Н	-5.908311	1.977187	-0.864103
С	-4.018745	1.099721	-0.479273
Н	-3.510833	1.969335	-0.886724
С	-3.272619	0.003985	-0.005585
Ν	-7.499209	-0.016063	0.004393
С	-8.527377	-2.253207	-0.369437
С	-8.263339	-1.104641	0.597455
Н	-9.125795	-3.029844	0.118647
Н	-7.591782	-2.705880	-0.713564
Н	-9.077481	-1.901621	-1.248969
Н	-7.752364	-1.461046	1.497414
Н	-9.212937	-0.681183	0.941312
С	-8.546141	2.211122	0.385220
С	-8.276786	1.065578	-0.583797
Н	-9.153950	2.982704	-0.099256
Н	-7.612834	2.671849	0.724842
Н	-9.088557	1.854105	1.267339
Н	-7.774216	1.427242	-1.486366
Н	-9.224262	0.633423	-0.922667
Cl	2.914904	-0.002512	2.362096
Ν	4.973469	-0.043108	0.011004
С	6.128316	-0.081611	0.018834
С	7.574923	-0.132537	0.029630
н	7.980379	0.828167	-0.299879
Н	7.927092	-0.344303	1.043069
Н	7.921054	-0.920773	-0.644794

S2: Selection of the TD-DFT method for the computation of the UV-Vis spectra

It was achieved based on the capability to reproduce satisfactory the energy of the low lying transition of **1t**. PBEO outperform the standard B3LYP, B3PW91 and CAM-B3LYP methods.

Exp. (UV-Vis) 550 nm

PBEO	656 nm (Δ vs exp. = 2940 cm ⁻¹)
B3LYP	732 nm (Δ vs exp. = 4520 cm ⁻¹)
B3PW91	717 nm (∆ vs exp. = 4230 cm ⁻¹)
CAM-B3LYP	451 nm (∆ vs exp. = 3390 cm ⁻¹)

Table S2: Crystal data of complex [1c]⁺(CF₃CO₂)

Crystals obtained after diffusion of diethyloxide in a solution of the complex in acetonitrile.

```
Empirical formula
                                C25 H24 C12 N5 O Ru, C2 F3 O2
Formula weight
                                695.48
Temperature
                                100(2) K
Wavelength
                                0.71073 A
Crystal system, space group
                                Orthorhombic, Pbcn
Unit cell dimensions
                            a = 25.0164(18) A alpha = 90 deg.
                            b = 15.6581(11) A beta = 90 deg.
                            c = 14.4095(11) A gamma = 90 deg.
Volume
                                5644.3(7) A^3
Z, Calculated density
                                8, 1.637 Mg/m^3
Absorption coefficient
                               0.804 mm^-1
                                0.7454 and 0.6802
Max. and min. transmission
F(000)
                                2800
                                0.200 x 0.060 x 0.020 mm
Crystal size
Theta range for data collection 1.534 to 26.395 deg.
Limiting indices
                              -31<=h<=30, -19<=k<=19,-18<=1<=18
Reflections collected / unique 96772 / 5775 [R(int) = 0.0624]
Completeness to theta = 25.242
                               100.0 %
Refinement method
                               Full-matrix least-squares on F^2
Data / restraints / parameters 5775 / 579 / 520
Goodness-of-fit on F^2
                                1.076
Final R indices [I>2sigma(I)]
                               R1 = 0.0812, wR2 = 0.2006
R indices (all data)
                                R1 = 0.1138, wR2 = 0.2260
Largest diff. peak and hole 1.913 and -0.811 e.A^-3
```

Table S3: Crystal data of complex [2t]⁺(PF₆)

Crystals obtained after diffusion of diethyloxide in a solution of the complex in acetone.

```
Empirical formula C23 H19 Cl2 N6 O2 Ru, F6 P, 2(C3 H6 O)
Formula weight
                                 844.54
                                 100(2) K
Temperature
Wavelength
                                 0.71073 A
Crystal system, space group
                                triclinic, P -1
Unit cell dimensions
                       a = 11.7489(10) A alpha = 92.726(3) deg.
                       b = 12.6748(11) A beta = 106.873(3) deg.
                       c = 13.5235(12) A gamma = 117.004(3) deg.
                                 1678.6(3) A^3
Volume
Z, Calculated density
                                 2, 1.671 Mg/m^3
Absorption coefficient
                                0.752 mm^-1
F(000)
                                 852
                                 0.10 x 0.04 x 0.02 mm
Crystal size
Theta range for data collection
                                1.61 to 26.73 deg.
Limiting indices
                                 -14<=h<=14, -16<=k<=16,
                                 -17<=1<=17
Reflections collected / unique 53504 / 7112 [R(int) = 0.0492]
Completeness to theta = 26.73 100.0 %
                               0.7459 and 0.7060
Max. and min. transmission
Refinement method
                                Full-matrix least-squares on F^2
                                7112 / 0 / 447
Data / restraints / parameters
Goodness-of-fit on F^2
                                 1.042
                               R1 = 0.0315, wR2 = 0.0714
Final R indices [I>2sigma(I)]
R indices (all data)
                                R1 = 0.0402, wR2 = 0.0761
Largest diff. peak and hole 1.073 and -0.539 e.A^-3
```

Table S4: Crystal data of complex [3]⁺(PF₆)

Crystals obtained after diffusion of diethyloxide in a solution of the complex in acetonitrile.

Empirical formula C25 H23 C12 N6 O3 Ru, F6 P Formula weight 772.43 Temperature 100(2) K Wavelength 0.71073 A Crystal system, space group triclinic, P -1 Unit cell dimensions a = 11.546(4) A alpha = 97.082(12) deg. b = 12.407(4) A beta = 100.947(13) deg. c = 13.352(4) A gamma = 116.663(13) deg. Volume 1630.1(10) A^3 Z, Calculated density 2, 1.574 Mg/m^3 Absorption coefficient 0.765 mm^-1 Max. and min. transmission 0.7465 and 0.7040 F(000) 772 0.14 x 0.12 x 0.04 mm Crystal size Theta range for data collection 1.60 to 31.51 deg. -16<=h<=16, -18<=k<=18, 0<=l<=19 Limiting indices Reflections collected / unique 10868 / 10868 [R(int) = 0.0000]Completeness to theta = 31.51 100.0 % Refinement method Full-matrix least-squares on F^2 10868 / 162 / 443 Data / restraints / parameters Goodness-of-fit on F^2 1.076 R1 = 0.0454, wR2 = 0.1353Final R indices [I>2sigma(I)] R indices (all data) R1 = 0.0552, wR2 = 0.1437Largest diff. peak and hole 1.140 and -1.536 e.A^-3

Table S5 : Crystal data of complex [4]⁺(PF₆)

Crystals obtained after diffusion of diethyloxide in a solution of the complex in acetonitrile.

```
Empirical formula
                                 C27 H27 C12 N5 Ru, F6 P
Formula weight
                                 738.48
                                 298(2) K
Temperature
                                 0.71073 A
Wavelength
Crystal system, space group
                                monoclinic, C 2/c
                                       alpha = 90 deg.
Unit cell dimensions
                       a = 8.5133(9) A
                       b = 39.637(4) A beta = 106.784(3) deg.
                       c = 10.0803(11) A gamma = 90 deg.
Volume
                                 3256.6(6) A^3
Z, Calculated density
                                 4, 1.506 Mg/m^3
                                0.754 mm^-1
Absorption coefficient
F(000)
                                 1472
                                 0.22 x 0.20 x 0.18 mm
Crystal size
Theta range for data collection 5.11 to 26.37 deg.
                                 -10 <= h <= 10, -44 <= k <= 49,
Limiting indices
                                 -12<=1<=12
Reflections collected / unique
                                13715 / 3323 [R(int) = 0.0544]
Completeness to theta = 26.37
                                99.2 %
Max. and min. transmission
                                0.7459 and 0.6348
Refinement method
                                Full-matrix least-squares on F^2
Data / restraints / parameters 3323 / 380 / 310
Goodness-of-fit on F^2
                                 1.083
Final R indices [I>2sigma(I)]
                                R1 = 0.0469, wR2 = 0.1066
R indices (all data)
                                R1 = 0.0714, wR2 = 0.1177
Largest diff. peak and hole 1.002 and -0.556 e.A^-3
```

Selected	[4] ⁺	[1c] ⁺
bonds (A)		
Ru-N(1)	2.074(4)	1.836(8)
Ru-N(2)	2.072(3)	2.075(7)
Ru-N(3)	1.942(6)	1.964(6)
Ru-N(2)i	2.072(3)	2.090(7)
Ru-Cl(1)	2.3444(9)	2.319(2)
Ru-Cl(2)	2.3444(9)	2.403(2)
N(1)-O(1)		1.055(10)
N(5)-C(19)	1.359(9)	1.384(12)
Selected angles (°)		
C(1)-N(1)-Ru(1)	180.00(1)	
O(1)-N(1)-Ru(1)		163.7(9)
N(3)-Ru(1)-N(2)	80.07(8)	79.2(3)
N(2)-Ru(1)-N(1)	99.93(8)	94.8(3)
C7-C8-C9 and C17-C16-C21	10.51(45)	19.42(63)

Table S6: Selected bond lengths and angles of $[\mathbf{1c}]^+$ (PF₆) and of the photoproduct: $[\mathbf{4}]$ (PF₆)