Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

Content:

- Additional experimental procedures.
- **Table S1.** Crystal data and structure refinement of $PtCl_2 \cdot 1/2$ NCMe and PT.
- **Figure S1.** Molecular structure of $(PT)Cl_2 \cdot 1/2$ NCMe.
- Figure S2. Molecular structure of PT.
- Figure S3. Scan rate dependence of CVs for PT at a GC electrode in CH_2Cl_2/nBu_4NPF_6 .
- Figure S4. Scan rate dependence of CVs for PT at a Pt electrode in CH_2Cl_2/nBu_4NPF_6 .
- Figure S5. Cyclic voltammetry measurement of PT and TA.
- Figure S6. Spectroelectrochemical measurement of PT and TA.
- **Table S2.**Simulated isotropic EPR Spectrum of PT⁺⁺ from DFT calculations
- **Table S3.**Simulated isotropic EPR spectrum of TA⁺⁺ from DFT calculations

Additional experimental procedures.

Synthesis of 10,10-dichlorophenoxatellurine, (PT)Cl₂.^[27] Diphenyl ether (7.00 g, 41.2 mmol) and tellurium tetrachloride (11.1 g, 41.2 mmol) were set into a flask with an aircondenser, carrying a moisture guard-tube and heated at 150°C for two hours and at 200°C for four hours, while hydrogen chloride was evolved. The cooled melt was ground and stirred with diethyl ether. After filtration the residue was stirred with acetone and filtered again. The solvent was evaporated and left crude (PT)Cl₂ (14.4 g, 39.3 mmol) that was used without further purification in the next step. A small amount of the crude product was recrystallized from acetonitrile to give orange-brown needles of (PT)Cl₂·1/2 MeCN.

¹H-NMR (360 MHz, d₆-acetone): $\delta = 8.04 - 7.73$ (m, 12H, C_{Ar}-H) ppm. ¹³C-NMR (90 MHz, Acetone-d₆): $\delta = 150.5$, 133.3, 132.8, 124.7, 119.1 (C_{Ar}), 117.9 (C_{Ar}-CH-Te), ¹²⁵Te-NMR (110 MHz, d₆-acetone): $\delta = 594.4$ ppm.

Synthesis of Phenoxatellurine (PT). A mixture of (PT)Cl₂ (2.00 g, 5.45 mmol) sodium sulfide nonahydrate (3.93 g, 16.35 mmol) were heated to 100°C for 15 minutes. After cooling to room temperature the solid was stirred with diethyl ether and washed with water. The organic layer was then separated and dried with magnesium sulfate. Evaporation of the ether left a dark reddish-brown solid, which on further purification by sublimation to give yellow spear-like needles of PT (1.60 g, 5.41 mmol, 99 %; Mp. 77°C. (78 - 79°C^[27]))

¹H-NMR (360 MHz, CDCl₃): δ = 7.68 - 7.06 (m, 12H, C_{Ar}-H) ppm. ¹³C-NMR (90 MHz, CDCl₃): δ = 165.8, 135.2, 129.4, 125.8, 119.9 (C_{Ar}), 106.6 (C_{Ar}-CH-Te), (C_{Ar}-CH-O) ppm. ¹²⁵Te-NMR (110 MHz, CDCl₃): δ = 420.0 ppm. MS (EI, 70 eV, 200 °C): m/z = 298 [M⁺], 168 [M-Te]⁺, 139 [M-Te-CHO]⁺. UV/VIS (CH₂Cl₂): λ_{max} = 279 nm, 343 nm.

	PTCl ₂ ·1/2 NCMe	PT [#]		
Formula	$C_{26}H_{19}Cl_4NO_2Te_2$	C ₁₂ H ₈ OTe		
Formula weight, g mol ⁻¹	774.42	295.78		
Crystal system	monoclinic	orthorhombic		
Crystal size, mm	$0.08 \times 0.08 \times 0.07$	$0.09\times0.07\times0.03$		
Space group	<i>C</i> 2/c	<i>P</i> 2 ₁ 2 ₁ 2 ₁		
<i>a</i> , Å	27.070(2)	5.9407(2)		
<i>b</i> , Å	13.247(1)	8.0196(3)		
<i>c</i> , Å	7.4254(7)	20.6459(6)		
<i>α</i> , °	90	90		
β, °	94.945(3)	90		
γ, °	90	90		
<i>V</i> , Å ³	2652.8(4)	983.61(6)		
Ζ	4	4		
$ ho_{ m calcd}$, Mg m ⁻³	1.939	1.997		
μ (Mo K α), mm ⁻¹	2.628	2.983		
<i>F</i> (000)	1480	560		
θ range, deg	2.74 to 35.03	2.62 to 27.50		
Index ranges	$-31 \le h \le 32$	$-10 \le h \le 10$		
	$-10 \leq k \leq 15$	$-11 \le k \le 14$		
	$-7 \le l \le 8$	$-36 \le l \le 29$		
No. of reflns collected	4974	13802		
Completeness to θ_{\max}	94.2%	99.0%		
No. indep. Reflns	1941	5780		
No. obsd reflns with $(I \ge 2\sigma(I))$	1703	5309		
No. refined params	161	127		
GooF (F^2)	1.143	1.038		
$R_1(F)(I > 2\sigma(I))$	0.0329	0.0258		
$wR_2(F^2)$ (all data)	0.0871	0.0490		
Largest diff peak/hole, e Å ⁻³	0.942 / -0.526	0.989 / -0.424		
CCDC number	1895457	1895458		

Table S1.Crystal data and structure refinement of $PtCl_2 \cdot 1/2$ NCMe and PT.

[#] Reinvestigation with inclusion of hydrogen atoms.^[37]

Figure S1. Molecular structure of $(PT)Cl_2 \cdot 1/2$ NCMe showing 50% probability ellipsoids

Figure S2. Molecular structure of PT showing 50% probability ellipsoids

Figure S3. Cyclic voltammetry measurement of phenoxatellurine (5.5 mg/mL) and thianthrene (5.7 mg/mL), conducting salt (0.1 M Bu_4NPF_6) in dichloromethane. The peak potential data for the two scans are:

E_{p1}^{a} TA	+0.81 V	E_{p1}^{a} PT	+0.52 V
E_{p1}^{c} TA	+0.34 V	E_{p1}^{c} PT -	+0.01 V

Figure S4. Scan rate dependence (0.2, 0.5, 0.8, 1.0 2.0 V/s) for CVs of PT in anodic scans through the first oxidation process in CH₂Cl₂/[n Bu₄N][PF₆] at a GC electrode. The ΔE^{a-c} (peak separation) varies as: 0.2: 152; 0.5: 189; 0.8, 200; 1.0, 228; 2.0, 262 mV.

Figure S5. Scan rate dependence (0.2, 0.5, 0.8, 1.0 2.0 V/s) for CVs of PT in anodic scans through the first oxidation process in CH₂Cl₂/[n Bu₄N][PF₆] at a Pt electrode. The ΔE^{a-c} (peak separation) varies as: 0.2: 292; 0.5: 327; 0.8, 355; 1.0, 363; 2.0, 394 mV.

Figure S6. UV-Vis Spectroelectrochemical measurement of PT (top) and TA (bottom).

EDR Sin	aul ation.	nhenoxytellur	rine radie	al cation							
LF N JII	Todaid	1 al ant	ine raut		C 211 C/2	ملام) // To	- 2	Daublat			
From.		_1_p1_opt	ato at Cause	lines	0-311+0(2	ui,p/// ie	-:	Doublet			
	1500	A hundrage	naci coup	Magallart	Causa	I Causa I	اممدا بيميز	EDD op option of the o	تبييا المفسيم ممم مأم	مم بمطامعا فبممه	DET
	16 U(1)	Abundant	a.u.		1 22005	1 22005	Simulaeu	EPR spectrum of the	prierioxyteriuri	ne radical from	DFI
	20 11(1)	99.96	-0.00065	-3.72430	-1.32093	1.32093	0.59 FileNat	Tre			
	20 H(1)	99.98	-0.00076	-3.36301	-1.20807	1.20807	Espe	Ament	Λ		- 1
	1/ T(1)	99.96	-0.00056	-2.50505	-0.69360	0.69560	-		11		
	21 T(1)	99.98	-0.00055	-2.43000	-0.80947	0.8094/			1		
	10 LI(1)	99.96	0.00012	0.55250	0.16990	0.16990	-		/ \		
	19 II(1)	99.90	0.0001	0.43473	0.10220	0.10220		/			5
	10 II(1)	55.50	-0.00000	0.20235	-0.0957	0.0957	0.29 -				· · · ·
	1 To(17	55.56	-0.00005	0.23049	-0.0651	0.0651	-				
	E C(12)	1 100	-0.00015	4 27657	1 56167	1 56167	-				
	5 C(15)	1.109	-0.00369	-4.3/03/	-1.3010/	1.3010/	- 1				
	2 C(12)	1.105	-0.00308	2 64260	-1.4736	1 20077					5
	0 C(13)	1.105	-0.00324	2 52101	1 25667	1.25577					
	9 C(13)	1.105	-0.00313	2 70009	-1.23007	0.0001					· · · · · · · · · · · · · · · · · · ·
	14 C(12)	1.109	-0.00245	-2.73550	-0.3331	0.5551					
	14 C(15)	1.109	-0.00244	1 76936	-0.97919	0.97919	-			1	
	10 C(15)	1.109	-0.00137	-1.70623 1 E409E	-0.03090 0 E4001	0.03090					
	4 C(13)	1.103	0.00137	0.05200	0.34005	0.34301	-				
	12 C(13)	1.103	0.00085	0.33233	0.34003	0.34003	-0.29 -			/	
	7 C(13)	1.105	0.00003	0.73138	0.20037	0.20037	_			1	
	13 C(13)	1.105	0.00045	0.54015	0.13465	0.13483			7	1	· · · ·
	2 0(17)	0.0373	0.00045	-10 53/19	-3 75912	3 75912					· · · ·
	20(17)	0.0575	0.01750	-10.5545	-3.73312	5.75512	-		1		
-		19		15			-	lator	V		
-	20				16)	3351.69	3356.18	M.3360.66Field (Gauss	0 3365.15	3369.63
•		11	6	5			Forsaka	of comparison, the sa	no 0 5 G I W/ic I	cad have for the	simulation
		10		4		6	In reality	we expect the strong	spin-orbit cour	lina of Te to sia	nificantly
					in reality, we expect the strong spin-orbit coupling of the to significantly				rana		
13 / 7					This is ove	ne LW 0j uns ruulare	resolvable by	artina solittina	in the signal		
.8	21	9		3		-	TTIIS IS EXP		resolvable nyp	erjine spineng	n the signal.
		14			7						
		22	1		18	5					
		9			-						

Table S2.Simulated isotropic EPR spectrum of PT⁺⁺ from DFT calculations

Table S3.Simulated isotropic EPR spectrum of TA⁺⁺ from DFT calculations