Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supplementary Information

Band-Gap Tunable Thiadiazolo[3,4-g]quinoxaline Derivatives as Non-Fullerene Acceptors for Organic Photovoltaic Cells Processed from Low Toxic Ethanol/Anisole Mixtures

Cristiana Costa,^{a,b} Joana Farinhas,^a Mariana F.G. Velho,^{a,c} João Avó,^d Manuel Matos,^{a,e} Adelino Galvão,^b Ana Charas^a

^{a.} Instituto de Telecomunicações, Instituto Superior Técnico, Av. Rovisco Pais 1, P-1049-001, Lisboa, Portugal. *Email:ana.charas@lx.it.pt

^{b.} Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal. *Email: adelino@tecnico.ulisboa.pt

^{c.} C²TN, Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10, 2695-066, Bobadela LRS, Portugal.

^{d.} CQFM-IN and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisboa, Portugal.

^e Departamento de Engenharia, Química, Instituto Superior de Engenharia de Lisboa, Lisboa, Portugal.

Contents

Fig. S1 ¹ H-NMR (400 MHz) spectrum of TQBT in CDCl ₃	2
Fig. S2 ¹³ C (100 MHz) (top) and DEPT 135 (CH and CH ₃ 's appearing negative and CH ₂ 's appearing positive) NMR	
spectrum (bottom) of TQBT in CDCl₃	2
Fig. S3 HRMS spectrum of TQBT	.3
Fig. S4 ¹ H-NMR (400 MHz) spectrum of TQFP in CD ₂ Cl ₂	3
Fig. S5 ¹³ C (100 MHz) (top) and DEPT 135 (CH and CH ₃ 's appearing negative and CH ₂ 's appearing positive) NMR	{
spectrum (bottom) of TQFP in CD ₂ Cl ₂	3
Fig. S6 HRMS spectrum of TQFP4	4
Fig. S7 ¹ H-NMR (400 MHz) spectrum of 3-{[2-(2-ethoxyethoxy)ethoxy]methyl}thiophene (2) in CD ₂ Cl ₂	4
Fig. S8 ¹³ C-NMR (75 MHz) spectrum of 3-{[2-(2-ethoxyethoxy)ethoxy]methyl}thiophene (2) in CD ₂ Cl ₂	4
Fig. S9 ¹ H-NMR (400 MHz) spectrum of 2,5-dibromo-3-{[2-(2-ethoxyethoxy)ethoxy]methyl} thiophene (3) in	
CDCl ₃	5
Fig. S10 ¹³ C-NMR (75 MHz) spectrum of 2,5-dibromo-3-{[2-(2-ethoxyethoxy)ethoxy]methyl}thiophene (3) in	
CDCl ₃	5
Fig. S11 ¹ H-NMR (400 MHz) spectrum of POEGT in CD ₂ Cl ₂ and signal ratios	5
Fig. S12 Differential Scanning Calorometry (DSC) thermograms of TQBT and TQFP	.6
Fig. S13 Differential Scanning Calorometry (DSC) thermograms of POEGT6	5
Fig. S14. UV-Vis absorption spectra of TQFP, TQBT, TQT1 and TQT2 in films showing the onset of the lowest	
energy absorption bands	7
Fig. S15 Stokes shifts as a function of the solvent polarity parameter Et30 for TQFP and TQBT.	7
Fig. S16 Dark J-V curves for the OSCs prepared from 1:1 (D:A) blends in various solvents.	7
Fig. S17 EQE spectra for the OSCs prepared from 1:1 (D:A) blends in various solvents.	8
Fig. S18 AFM topography (upper) and phase (down) images of blend films of: POEGT:TQT1 processed from DC	В
(a), Anisole (AN) (b), AN/EtOH (70:30) (c); POEGT:TQT2 processed from DCB (d), AN (e); POEGT:TQFP processe	d
from DCB (f), AN (g) and AN/EtOH (70:30) (h)	8
Fig. S19 AFM topography and phase images of active layers composed of POEGT:TQFP 1:2 ratio (a);	
POEGT:TQBT 2:1 ratio (b); and POEGT:TQBT 1:2 ratio (c)	9

Table S1 Performance parameters of the OSCs prepared with 1:2 or 2:1 (D:A) blends......9

Fig. S2 13 C (100 MHz) (top) and DEPT 135 (CH and CH_3 's appearing negative and CH_2 's appearing positive) NMR spectrum (bottom) of TQBT in CDCl₃.

Fig. S5 ¹³C (100 MHz) (top) and DEPT 135 (CH and CH_3 's appearing negative and CH_2 's appearing positive) NMR spectrum (bottom) of TQFP in CD_2Cl_2 .

Fig. S7 ¹H-NMR (400 MHz) spectrum of 3-{[2-(2-ethoxyethoxy)ethoxy]methyl}thiophene (2) in CD₂Cl₂.

Fig. S8 ¹³C-NMR (75 MHz) spectrum of 3-{[2-(2-ethoxyethoxy)ethoxy]methyl}thiophene (2) in CD₂Cl₂.

Fig. S9 ¹H-NMR (400 MHz) spectrum of 2,5-dibromo-3-{[2-(2-ethoxyethoxy)ethoxy]methyl} thiophene (3) in CDCl₃.

Fig. S10¹³C-NMR (75 MHz) spectrum of 2,5-dibromo-3-{[2-(2-ethoxyethoxy)ethoxy]methyl}thiophene (3) in CDCl₃.

Fig. S11 1 H-NMR (400 MHz) spectrum of POEGT in CD₂Cl₂ and signal ratios.

Fig. S12 Differential Scanning Calorometry (DSC) thermograms of TQBT and TQFP (Scan rate = 10 °C/min).

Fig. S13 Differential Scanning Calorometry (DSC) thermograms of POEGT (Scan rate = 10 °C/min).

Fig. S14. UV-Vis absorption spectra of TQFP, TQBT, TQT1 and TQT2 in films showing the onset of the lowest energy absorption bands.

Fig. S15 Stokes shifts as a function of the solvent polarity parameter Et30 for TQFP and TQBT.

Fig. S16 Dark J-V curves for the OSCs prepared from 1:1 (D:A) blends in various solvents.

Fig. S17 EQE spectra for the OSCs prepared from 1:1 (D:A) blends in various solvents.

Fig. S18 AFM topography (upper) and phase (down) images of blend films of: POEGT:TQT1 processed from DCB (a), Anisole (AN) (b), AN/EtOH (70:30) (c); POEGT:TQT2 processed from DCB (d), AN (e); POEGT:TQFP processed from DCB (f), AN (g) and AN/EtOH (70:30) (h).

Fig. S19 AFM topography and phase images of active layers composed of POEGT:TQFP 1:2 ratio (a); POEGT:TQBT 2:1 ratio (b); and POEGT:TQBT 1:2 ratio (c).

Active layer (AN/EtOH 70:30)	D:A ratio	J _{sc} (mA/cm²)	V _{oc} (V)	FF	PCE (%) best/ave ^a	AL Thickn (nm)
POEGT:TQFP	1:2	-1.19	0.70	0.33	0.27/0.20	70
POECTITORT	2:1	-0.70	0.84	0.26	0.16/0.15	80
FOEGI.IQBI	1:2	-1.27	0.86	0.31	0.34/0.31	85

Table S1 Performance parameters of the OSCs prepared with 1:2 or 2:1 (D:A) blends.

^a Best values followed by the averages calculated from at least 8 devices.