Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Density Functional Theory Simulation of Cobalt Oxide Aggregation and Facile Synthesis of Cobalt oxide, Gold and Multiwalled Carbon Nanotubes based Ternary Composite for a High Performance Supercapattery

Javed Iqbal^{1,2}, Lijie Li³, Arshid Numan^{4,5#}, Saqib Rafique³, Rashida Jafer⁶, Sharifah

Mohamad¹, Mohammad Khalid⁵, K. Ramesh⁷, S. Ramesh^{7*}

¹Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.

²Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

³Multidisciplinary Nanotechnology Centre, College of Engineering, Swansea University, Swansea SA1 8EN, United Kingdom.

⁴State Key Laboratory of ASIC and System, SIST, Fudan University, 200433, Shanghai, China

⁵Graphene & Advanced 2D Materials Research Group (GAMRG), School of Science and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.

⁶Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

⁷Center for Ionics University of Malaya, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.

*Corresponding authors

* E-mail: <u>rameshtsubra@gmail.com</u>,

<u>numan.arshed@gmail.com</u>

Tel: +603-7967 4391, Fax: +603-7967 4146

Raman spectroscopy is the most commonly used non-destructive technique to analyze the quality and structure of the carbon-based materials.¹ Figure S1 (a and b) presents the Raman spectra of MWCNTs and $Co_3O_4/Au@MWCNTs$ composite, respectively. In Figure

S1(a and b), two sharp peaks at 1356 (1350 cm⁻¹ in case of composite) and 1592 (1585 cm⁻¹ in case of composite) cm⁻¹ presents the typical defect bands (D) and attributed to the presence of disorder in carbon systems (disorder induced by defects and curvature in the nanotube lattice)² and G (graphite)-band owing to the in-plane vibration of the C–C bond (G band), respectively.³⁻⁵ Also, an overtone of the D band (2D band) is present at 2695 cm⁻¹ (2708 cm⁻¹ in case of composite), attributed to the two-phonon scattering.⁶ However, the spectra in **Figure S1b** (and inset) shows significant differences as compared to the pristine MWCNTs and featured several peaks in the lower wavenumber region, mainly ascribed to the presence of Co₂O₃ NPs in the Co₃O₄/Au@MWCNTs ternary composite. It should be noted that Raman does not detect the noble metals and therefore, Au traces cannot be seen in the spectra.⁷ The peaks present at 479, 520,622 and 686 cm⁻¹ are attributed to E_g, F¹_{2g}, F²_{2g} and A_{1g} modes of modes of Co₃O₄, respectively.^{7.9} Hence, the Raman spectra compliments the other results in the manuscript and shows the successful formation of Co₃O₄/Au@MWCNTs composite.

Figure S1 Raman spectrum of (a) acid treated MWCNTs and (b) Co₃O₄/Au@MWCNTs nanocomposite.

References

- H. Murphy, P. Papakonstantinou and T. T. Okpalugo, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2006, 24, 715-720.
- 2. H. Qi, J. Liu and E. Mäder, *Fibers*, 2014, **2**, 295-307.
- 3. M. Zdrojek, W. Gebicki, C. Jastrzebski, T. Melin and A. Huczko, 2004.
- 4. L. Bokobza and J. Zhang, *Express Polymer Letters*, 2012, **6**.
- D. Baskaran, J. W. Mays and M. S. Bratcher, *Chemistry of Materials*, 2005, 17, 3389-3397.
- V. L. Kuznetsov, S. N. Bokova-Sirosh, S. I. Moseenkov, A. V. Ishchenko, D. V. Krasnikov, M. A. Kazakova, A. I. Romanenko, E. N. Tkachev and E. D. Obraztsova, *physica status solidi (b)*, 2014, 251, 2444-2450.
- M. M. Shahid, P. Rameshkumar, A. Pandikumar, H. N. Lim, Y. H. Ng and N. M. Huang, *Journal of Materials Chemistry A*, 2015, 3, 14458-14468.
- 8. H. Kim, D.-H. Seo, S.-W. Kim, J. Kim and K. Kang, *Carbon*, 2011, 49, 326-332.
- 9. H.-C. Liu and S.-K. Yen, *Journal of Power Sources*, 2007, 166, 478-484.