Electronic Supplementary Information (ESI ${ }^{\dagger}$)

Selective catalytic oxidation of benzene to phenol by a vanadium oxide $\left(\mathrm{V}_{\mathrm{nr}}\right)$ nanorod catalyst in $\mathrm{CH}_{3} \mathrm{CN}$ using $\mathrm{H}_{2} \mathrm{O}_{2(\mathrm{aq})}$ and pyrazine-2carboxylic acid (PCA)

Wondemagegn Hailemichael Wanna, ${ }^{\text {a,b }}$ Damodar Janmanchi, ${ }^{\text {a }}$ Natarajan Thiyagarajan, ${ }^{\text {a }}$ Ravirala Ramu, ${ }^{\text {a,c }}$ Yi-Fang Tsai, ${ }^{\text {a }}$ Chih-Wen Pao, ${ }^{\text {d }}$ and Steve S.-F. $Y^{a}{ }^{\mathrm{a}, \mathrm{b}, *}$

From ${ }^{\text {a }}$ Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
${ }^{\text {b }}$ Sustainable Chemical Science and Technology, Taiwan International Graduate Program (TIGP), National Chiao-Tung University and Academia Sinica, Taiwan ${ }^{\text {c Sree Dattha }}$ Institute of Engineering \& Science, Hyderabad, Telangana, India501510
${ }^{\mathrm{d}}$ National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan

[^0]Table S1. Oxidation of benzene to p-benzoquinone (p - BQ) and phenol (PhOH) catalyzed by the various vanadium catalysts. ${ }^{[a]}$

Catalyst	TON ${ }^{[b]}$		Total TON ${ }^{[c]}$	$\begin{gathered} \mathrm{Y}_{\mathrm{S}} \\ {[\%]^{[\mathrm{d}]}} \end{gathered}$	$\begin{gathered} \mathrm{Y}_{\mathrm{O}} \\ {[\%]^{[\mathrm{e}]}} \end{gathered}$	$\begin{aligned} & \hline \mathrm{OCE} \\ & {[\%]^{[f]}} \end{aligned}$	$\begin{aligned} & \mathrm{PhOH} \\ & {[\%]^{[g]}} \\ & \hline \end{aligned}$	$\mathrm{H}_{2} \mathrm{O}_{2}(\%)$ remained
	p-BQ	PhOH						
V_{nr}	1.75	11.74	13.49	4.21	7.03	12.10	87.03	25
$\begin{gathered} \mathrm{V}_{\mathrm{nr}} \\ (\mathrm{PCA}) \end{gathered}$	1.30	25.54	26.83	8.37	13.99	63.93	95.17	77
$\mathrm{V}_{2} \mathrm{O}_{5}$	0.18	5.19	5.37	1.68	2.80	4.91	96.62	41
$\begin{gathered} \mathrm{V}_{2} \mathrm{O}_{5} \\ \text { (PCA) } \end{gathered}$	0.55	9.58	10.13	3.16	5.28	8.97	94.59	38
VOSO_{4}	0.78	8.38	9.16	2.86	4.78	6.50	91.46	20
VOSO_{4} (PCA)	0.58	9.11	9.70	3.03	5.06	7.56	94.00	29
VCl_{3}	0.68	6.12	6.80	2.12	3.55	13.13	89.98	70
$\begin{gathered} \mathrm{VCl}_{3} \\ (\mathrm{PCA}) \\ \hline \end{gathered}$	0.48	6.93	7.41	2.31	3.86	12.14	93.50	66

${ }^{[a]}$ Conditions: Total volume of the reaction solution was 3 mL ; Solvent: acetonitrile; Catalyst: $\mathrm{V}_{\mathrm{nr}} / \mathrm{V}_{2} \mathrm{O}_{5} / \mathrm{VOSO}_{4} / \mathrm{VCl}_{3}(0.014 \mathrm{mmol})$; Substrate: benzene (4.486 mmol); Oxidant: $35 \% \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})(2.685 \mathrm{mmol})$; PCA (0.04 mmol); Temperature: $25^{\circ} \mathrm{C}$; Time: 5 h . Product quantification was conducted by GC analysis with nitrobenzene as the internal standard. ${ }^{[b]}$ Turnover number (TON) for each of the oxygenated products, p BQ and $\mathrm{PhOH}(\mathrm{mmol})$, respectively, was determined by calculating the number of millimoles of product per millimole of catalyst (based on V content). ${ }^{[c]}$ The total TON of the products $(p-\mathrm{BQ}+\mathrm{PhOH})$. ${ }^{[d]} \mathrm{Ys}[\%]_{\mathrm{c}}=\left[\right.$ substrate $\left.(\mathrm{mol}) / \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~mol})\right] \times 100$. ${ }^{[\mathrm{e}]} \mathrm{Y}_{\mathrm{O}}$ $[\%]_{\mathrm{c}}=\left[\right.$ products $\left.(\mathrm{mol}) / \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~mol})\right] \times 100$. ${ }^{[f]}$ Overall catalytic efficiency $(\mathrm{OCE})=(2 \times p-$ $\mathrm{BQ}+\mathrm{PhOH})[\mathrm{TON}] /\left[\mathrm{H}_{2} \mathrm{O}_{2}\right.$ consumed (equiv.)]. ${ }^{[\mathrm{g}]}$ Selectivity of $\mathrm{PhOH}=[(\mathrm{PhOH})$ $(\mathrm{mol}) /[p-\mathrm{BQ}+\mathrm{PhOH}](\mathrm{mol})] \times 100$.

Table S2. Oxidation of benzene to p-benzoquinone (p - BQ) and phenol (PhOH) catalyzed by the vanadium oxide nanorod catalyst ($\mathbf{V}_{\mathbf{n r}}$) using various $\mathrm{H}_{2} \mathrm{O}_{2(\mathrm{aq})}$ concentrations. ${ }^{[a]}$

$\begin{aligned} & 35 \%_{H_{2} \mathrm{O}_{2}} \\ & (\mathrm{mmol}) \end{aligned}$	TON ${ }^{[b]}$		$\begin{aligned} & \text { Total } \\ & \text { TON } \end{aligned}$	$\underset{[\%]^{[d]}}{\mathrm{Y}_{\mathrm{S}}}$	$\begin{gathered} \mathrm{Y}_{\mathrm{O}} \\ {[\%]^{[\mathrm{ec}}} \end{gathered}$	$\begin{aligned} & \text { OCE } \\ & {[\%]^{[f]}} \end{aligned}$	$\begin{aligned} & \mathrm{PhOH} \\ & {[\%]^{[s]}} \end{aligned}$	$\mathrm{H}_{2} \mathrm{O}_{2}(\%)$ remained
	p-BQ	PhOH						
0.31	0.06	2.34	2.40	0.75	10.85	13.69	97.42	18
0.67	0.08	13.14	13.22	4.12	27.62	37.98	99.43	27
1.34	0.09	16.99	17.09	5.33	17.85	31.23	99.46	42
2.68	1.30	25.54	26.83	8.37	13.99	63.93	95.17	77
4.64	0.21	6.71	6.92	2.16	2.09	10.35	96.90	79
9.28	0.13	8.26	8.38	2.62	1.26	10.77	98.47	88

${ }^{[a]}$ Conditions: Total volume of the reaction solution was 3 mL , Solvent: acetonitrile; Catalyst: V_{nr} (V content: 0.014 mmol), Substrate: benzene (4.486 mmol); PCA (0.04 mmol), Temperature: $25^{\circ} \mathrm{C}$; Time: 5 h . Product quantification was conducted by GC analysis with nitrobenzene as the internal standard; ${ }^{[b]}$ Turnover number (TON) for each of the oxygenated products, $p-\mathrm{BQ}$ and PhOH (mmol), respectively, was determined by calculating the number of millimoles of product per millimole of catalyst (based on V content). ${ }^{[\mathrm{c}]}$ The total TON of the products $(p-\mathrm{BQ}+\mathrm{PhOH}) .{ }^{[\mathrm{d}]} \mathrm{Ys}[\%]_{\mathrm{c}}=[$ substrate $\left.(\mathrm{mol}) / \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~mol})\right] \times 100 \cdot{ }^{[\mathrm{ef}]} \mathrm{Y}_{\mathrm{O}}[\%]_{\mathrm{c}}=\left[\right.$ products $\left.(\mathrm{mol}) / \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~mol})\right] \times 100$. ${ }^{[f]}$ Overall catalytic efficiency $(\mathrm{OCE})=(2 \times p-\mathrm{BQ}+\mathrm{PhOH})[\mathrm{TON}] /\left[\mathrm{H}_{2} \mathrm{O}_{2}\right.$ consumed. ${ }^{[g]}$ Selectivity of $\mathrm{PhOH}=[(\mathrm{PhOH})(\mathrm{mol}) /[p-\mathrm{BQ}+\mathrm{PhOH}](\mathrm{mol})] \times 100$. (equiv.) $]$

Table S3. Oxidation of benzene to p-benzoquinone ($p-\mathrm{BQ}$) and phenol (PhOH) catalyzed by the vanadium oxide nanorod catalyst (\mathbf{V}_{nr}) using various $\mathrm{H}_{2} \mathrm{O}_{2(\mathrm{aq})}$ percentages. ${ }^{[a]}$

	$\mathrm{TON}^{[b]}$							
$\%^{[b]} \mathrm{H}_{2}$	p-BQ	PhOH	Total $\mathrm{TON}^{[c]}$	Y_{S} $[\%]^{[d]}$	Y_{O} $[\%]^{[e]}$	OCE $[\%]^{[f]}$	PhOH $\left.[\%]^{[g] ~}\right]$	$\mathrm{H}_{2} \mathrm{O}_{2}(\%)$ remained
5	0.09	3.32	3.42	1.07	12.45	25.07	97.26	49
10	0.16	7.03	7.19	2.24	13.13	28.29	97.73	52
20	0.23	10.81	11.04	3.45	10.08	28.92	97.88	64
35	1.30	25.54	26.83	8.37	13.99	63.93	95.17	77

${ }^{[a]}$ Conditions: Total volume of the reaction solution was 3 mL ; Solvent: acetonitrile; Catalyst: $\mathrm{V}_{\mathrm{nr}}(\mathrm{V}$ content: 0.014 mmol$)$, Substrate: benzene (4.486 mmol); $\mathrm{H}_{2} \mathrm{O}_{2(\text { (aq) }}(260$ $\mu \mathrm{L}$); PCA (0.04 mmol); Temperature: $25^{\circ} \mathrm{C}$; Time: 5 h . The products were determined using GC analysis with nitrobenzene as the internal standard. ${ }^{[b]}$ Turnover number (TON) for each of the oxygenated products, $p-\mathrm{BQ}$ and PhOH (mmol), respectively, was determined by calculating the number of millimoles of product per millimole of catalyst (based on V content). ${ }^{[\mathrm{c}]}$ The total TON of the products $(p-\mathrm{BQ}+\mathrm{PhOH}) .{ }^{[\mathrm{d}]} \mathrm{Ys}[\%]_{\mathrm{c}}=$ [substrate $\left.(\mathrm{mol}) / \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~mol})\right] \times 100 \cdot{ }^{[\mathrm{e}]} \mathrm{Y}_{\mathrm{O}}[\%]_{\mathrm{c}}=\left[\right.$ products $\left.(\mathrm{mol}) / \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~mol})\right] \times 100$. ${ }^{[f]}$ Overall catalytic efficiency $(\mathrm{OCE})=(2 \times p-\mathrm{BQ}+\mathrm{PhOH})[\mathrm{TON}] /\left[\mathrm{H}_{2} \mathrm{O}_{2}\right.$ consumed (equiv.)]. ${ }^{[g]}$ Selectivity of $\mathrm{PhOH}=[(\mathrm{PhOH})(\mathrm{mol}) /[p-\mathrm{BQ}+\mathrm{PhOH}](\mathrm{mol})] \times 100$.

Table S4. Oxidation of benzene to p-benzoquinone ($p-\mathrm{BQ}$) and phenol (PhOH) catalyzed by the vanadium oxide nanorod catalyst $\left(\mathrm{V}_{\mathrm{nr}}\right)$ in presence of PCA. ${ }^{[a]}$

Time (h)	TON ${ }^{[b]}$		$\begin{gathered} \text { Total } \\ \text { TON }^{[c]} \end{gathered}$	$\underset{[\%]^{[d]}}{\mathrm{Y}_{\mathrm{S}}}$	$\begin{gathered} \mathrm{Y}_{\mathrm{O}} \\ {[\%]^{[\mathrm{ce}]}} \end{gathered}$	$\begin{gathered} \mathrm{OCE} \\ {[\%]^{[\mathrm{f]}]}} \end{gathered}$	$\begin{aligned} & \mathrm{PhOH} \\ & {[\%]^{[g]}} \end{aligned}$	$\begin{gathered} \mathrm{H}_{2} \mathrm{O}_{2}(\%) \\ \text { remained } \end{gathered}$
	$p-\mathrm{BQ}$	PhOH						
1 min	0.21	0.45	0.67	0.21	0.35	21.95	68.26	98
10 min	0.30	2.33	2.63	0.82	1.37	22.51	88.65	93
20 min	0.34	2.64	2.99	0.93	1.56	19.60	88.45	91
30 min	0.44	2.74	3.18	0.99	1.66	17.22	86.21	89
45 min	0.53	3.21	3.74	1.17	1.95	17.79	85.78	87
1	0.69	9.83	10.52	3.28	5.48	41.49	93.45	86
2	1.09	21.39	22.48	7.01	11.72	69.31	95.16	82
3	1.36	23.03	24.39	7.61	12.72	71.53	94.43	81
5	1.30	25.54	26.83	8.37	13.99	63.93	95.17	77
10	1.26	27.23	28.49	8.89	14.85	39.65	95.59	61
18	0.82	27.23	28.05	8.75	14.62	26.48	97.08	43
24	0.57	27.48	28.04	8.75	14.62	24.88	97.97	40
48	0.37	28.36	28.73	8.97	14.98	21.39	98.72	29

${ }^{[a]}$ Conditions: Total volume of the reaction solution was 3 mL ; Solvent: acetonitrile; Catalyst: V_{nr} (V content: 0.014 mmol); Substrate: benzene (4.486 mmol); Oxidant: 35% $\mathrm{H}_{2} \mathrm{O}_{2 \text { (aq) }}(2.685 \mathrm{mmol})$; PCA (0.04 mmol); Temperature: $25^{\circ} \mathrm{C}$. The products were determined using GC analysis with nitrobenzene as the internal standard. ${ }^{[b]}$ Turnover number (TON) for each of the oxygenated products, p - BQ and PhOH (mmol), respectively, was determined by calculating the number of millimoles of product per millimole of catalyst (based on V content). ${ }^{[\mathrm{c}]}$ The total TON of the products ($p-\mathrm{BQ}+$ $\mathrm{PhOH}) .{ }^{[d]} \mathrm{Y}_{\mathrm{s}}[\%]_{\mathrm{c}}=\left[\right.$ substrate $\left.(\mathrm{mol}) / \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~mol})\right] \times 100 .{ }^{[\mathrm{e}]} \mathrm{Y}_{\mathrm{O}}[\%]_{\mathrm{c}}=$ [products $\left.(\mathrm{mol}) / \mathrm{H}_{2} \mathrm{O}_{2} \quad(\mathrm{~mol})\right] \times 100$. ${ }^{[f]}$ Overall catalytic efficiency $(\mathrm{OCE})=(2 \times p-\mathrm{BQ}+$ $\mathrm{PhOH})[\mathrm{TON}] /\left[\mathrm{H}_{2} \mathrm{O}_{2}\right.$ consumed (equiv.)]. ${ }^{[\mathrm{g}\}}$ Selectivity of $\mathrm{PhOH}=[(\mathrm{PhOH})(\mathrm{mol}) /[p-$ $\mathrm{BQ}+\mathrm{PhOH}](\mathrm{mol})] \times 100$.

Table S5. Oxidation of benzene to p-benzoquinone ($p-\mathrm{BQ}$) and phenol (PhOH) catalyzed by the recycled vanadium oxide nanorod catalyst $\left(\mathbf{V}_{\mathbf{n r}}\right) .{ }^{[a]}$

Catalyst	TON ${ }^{[b]}$		$\begin{gathered} \hline \text { Total } \\ \text { TON }^{[c]} \end{gathered}$	$\begin{gathered} \mathrm{Y}_{\mathrm{S}} \\ {[\%]^{[\mathrm{d}}} \\] \end{gathered}$	$\begin{gathered} \mathrm{Y}_{\mathrm{o}} \\ {[\%]^{[\mathrm{ec}}} \end{gathered}$	$\begin{aligned} & \hline \mathrm{OCE} \\ & {[\%]^{[f]}} \end{aligned}$	$\begin{aligned} & \mathrm{PhOH} \\ & {[\%]^{[g]}} \end{aligned}$	$\mathrm{H}_{2} \mathrm{O}_{2}(\%)$remained
	$\begin{aligned} & p- \\ & \mathrm{BQ} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{PhO} \\ \mathrm{H} \end{gathered}$						
\mathbf{V}_{nr} (w/o PCA)	1.75	11.74	13.49	4.21	7.03	12.10	87.03	25
$\mathbf{V}_{\mathrm{nr}}+$ (PCA)	1.30	25.54	26.83	8.37	13.99	63.93	95.17	77
$\begin{aligned} & 1^{\text {st }} \text { recycled } \mathbf{V}_{\mathrm{nr}} \\ & \text { (w/o PCA) } \end{aligned}$	1.65	15.73	17.38	5.42	9.06	12.49	90.50	32
$\begin{aligned} & 1^{\text {st }} \begin{array}{c} \text { recycled } \\ \mathbf{V}_{\mathrm{nr}} \end{array}+ \\ & (\mathrm{PCA}) \end{aligned}$	2.04	20.34	22.38	6.99	11.67	31.15	90.88	65
$\begin{gathered} 2^{\text {nd }} \text { recycled } \mathbf{V}_{\mathrm{nr}} \\ (\text { w/o PCA) } \end{gathered}$	1.89	16.85	18.74	5.85	9.77	13.42	90.00	37
$\begin{gathered} 2^{\text {nd }} \text { recycled } \mathbf{V}_{\mathrm{nr}}+ \\ \text { (PCA) } \end{gathered}$	2.14	20.75	22.90	7.15	11.94	22.30	92.72	54
\mathbf{V}_{nr} leaching	-	1.75	1.75	0.03	0.05	2.32	100	57

${ }^{[a]}$ Conditions: Total volume of the reaction solution was 3 mL ; Solvent: acetonitrile; $\mathbf{V}_{\mathbf{n r}}$ (V content: 0.014 mmol), $1^{\text {st }}$ recycled $\mathbf{V}_{\mathbf{n r}}$ (V content: 0.012 mmol) ; 2 ${ }^{\text {nd }}$ recycled $\mathbf{V}_{\mathbf{n r}}$ (V content: 0.011 mmol), the leached $\mathbf{V}_{\mathbf{n r}}$ (V content: $8.4 \times 10^{-4} \mathrm{mmol}$), Substrate: benzene (4.486 mmol); Oxidant: $35 \% \mathrm{H}_{2} \mathrm{O}_{2 \text { (aq) }}$ (2.685 mmol); PCA (0.04 mmol); Temperature: $25^{\circ} \mathrm{C}$; Time: 5 h . The products were determined using GC analysis with nitrobenzene as the internal standard. ${ }^{[b]}$ Turnover number (TON) for each of the oxygenated products, $p-\mathrm{BQ}$ and PhOH (mmol), respectively, was determined by calculating the number of millimoles of product per millimole of catalyst (based on V content). ${ }^{[c]}$ The total TON of the products $(p-\mathrm{BQ}+\mathrm{PhOH}) .{ }^{[d]} \mathrm{Y}_{\mathrm{s}}[\%]_{\mathrm{c}}=[$ substrate $\left.(\mathrm{mol}) / \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~mol})\right] \times 100 .{ }^{[\mathrm{el}]} \mathrm{Y}_{\mathrm{O}}[\%]_{\mathrm{c}}=\left[\right.$ products $\left.(\mathrm{mol}) / \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~mol})\right] \times 100$. ${ }^{[f]}$ Overall catalytic efficiency $(\mathrm{OCE})=(2 \times p-\mathrm{BQ}+\mathrm{PhOH})[\mathrm{TON}] /\left[\mathrm{H}_{2} \mathrm{O}_{2}\right.$ consumed (equiv.) $]$. ${ }^{[g]}$ Selectivity of $\mathrm{PhOH}=[(\mathrm{PhOH})(\mathrm{mol}) /[p-\mathrm{BQ}+\mathrm{PhOH}](\mathrm{mol})] \times 100$.

Table S6. Oxidation of toluene to benzaldehyde (a), methyl p-benzoquinone (b) benzyl alcohol (c), o-cresol (d), and p-cresol (e) catalyzed by the vanadium oxide nanorod catalyst $\left(\mathrm{V}_{\mathrm{nr}}\right) .{ }^{[\mathrm{a}]}$

Catalyst	$\mathrm{TON}^{[b]}$					$\begin{gathered} \text { Total } \\ \text { TON }^{[c]} \end{gathered}$	$\begin{gathered} \mathrm{Y}_{\mathrm{S}} \\ {[\%]^{[\mathrm{d}]}} \end{gathered}$	$\begin{gathered} \mathrm{Y}_{0} \\ {[\%]^{[\mathrm{e}]}} \end{gathered}$	$\begin{gathered} \text { OCE } \\ {[\%]^{[f]}} \end{gathered}$	$\begin{gathered} s p^{2} / s p^{3} \\ {[\%]^{[g]}} \end{gathered}$	$\mathrm{H}_{2} \mathrm{O}_{2}$ (\%) remained
	a	b	c	d	e						
V_{nr}	3.33	0.74	0.36	1.01	1.13	6.57	2.06	3.43	8.06	44/56	33
$\begin{gathered} \mathrm{V}_{\mathrm{nr}} \\ (\mathrm{PCA}) \end{gathered}$	6.9	4.6	1.64	4.02	3.41	20.57	6.44	10.73	25.05	58/42	31
$\begin{gathered} \mathrm{V}_{\mathrm{nr}} \\ \left(\mathrm{PCA}, \mathrm{PPh}_{3}\right)^{[\mathrm{h}]} \end{gathered}$	4.5	-	3.67	3.82	3.64	15.62	4.89	8.14	12.05	48/52	13

${ }^{[a]}$ Conditions: Total volume of the reaction solution was 3 mL ; Solvent: acetonitrile; V_{nr} (V content: 0.014 mmol$)$; Substrate: toluene (4.47 mmol); Oxidant: $35 \% \mathrm{H}_{2} \mathrm{O}_{2(\mathrm{aq})}(2.685$ $\mathrm{mmol})$; PCA (0.04 mmol); Temperature: $25{ }^{\circ} \mathrm{C}$; Time: 5 h . The products were determined using GC analysis with nitrobenzene as the internal standard. ${ }^{[b]}$ Turnover number (TON) for each of the oxygenated products, a-e (mmol), respectively, was determined by calculating the number of millimoles of product per millimole of catalyst (based on V content). ${ }^{[\mathrm{cl}]}$ The total TON of the products $(\mathbf{a}+\mathbf{b}+\mathbf{c}+\mathbf{d}+\mathbf{e}) .{ }^{[d]} \mathrm{Y}_{\mathrm{s}}[\%]_{\mathrm{c}}=$ [substrate $\left.(\mathrm{mol}) / \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~mol})\right] \times 100$. ${ }^{[\mathrm{el}]} \mathrm{Y}_{\mathrm{O}}[\%]_{\mathrm{c}}=\left[\right.$ products $\left.(\mathrm{mol}) / \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~mol})\right] \times 100$. ${ }^{[f]}$ Overall catalytic efficiency $(\mathrm{OCE})=(2 \times \mathbf{a}+2 \times \mathbf{b}+\mathbf{c}+\mathbf{d}+\mathbf{e})[\mathrm{TON}] /\left[\mathrm{H}_{2} \mathrm{O}_{2}\right.$ consumed (equiv.)]. ${ }^{[\mathrm{g}]}$ Selectivity for products, $o-, p$-cresols and methyl $p-\mathrm{BQ}=[(\mathrm{c}+\mathrm{d}+\mathrm{e})(\mathrm{mol}) /$ all oxidation products $(\mathrm{mol})] \times 100$. ${ }^{[\mathrm{h}]} \mathrm{PPh}_{3}$ was added after 5 h of reaction time and continued stirring for additional 30 min .

Table S7. The XPS characterization of vanadium oxide catalysts.

Samples	XPS	
	V / O	$\mathrm{V}^{4+} / \mathrm{V}^{5+}$
$\mathbf{V}_{\mathbf{n r}}$	0.037	0.301
$\mathbf{V}_{\mathbf{n r}(\text { cal }}$	0.274	0.218
$1^{\text {st }}$ recycled $\mathbf{V}_{\mathbf{n r}}+(\mathrm{PCA})$	0.222	0.639
$\mathrm{~V}_{2} \mathrm{O}_{5}$ commercial	0.364	0.118

2. Figures

Fig. S1. The XPS survey spectrum of vanadium oxide nanorod $\left(\mathbf{V}_{\mathbf{n r}}\right)$ catalyst.

Fig. S2. The high-resolution XPS spectra of vanadium oxide nanorod ($\mathbf{V}_{\mathbf{n r}}$) catalyst de-convoluted presented for: (a) O 1s and (b) C 1s. (Si-O signal contribution is from the Si sample holder)

Fig. S3. The high-resolution XPS spectra of vanadium oxide catalysts were deconvoluted presented for V 2 p3/2. (a) $\mathbf{V}_{\mathbf{n r}}$; (b) calcined $\mathbf{V}_{\mathbf{n r}}$; (c) ${ }^{\text {st }}$ recycled $\mathbf{V}_{\mathbf{n r}}$ and (d) $\mathrm{V}_{2} \mathrm{O}_{5}$ commercial catalyst.

Fig. S4. Thermogravimetric analysis (TGA) diagram of vanadium oxide nanorod $\left(\mathbf{V}_{\mathbf{n r}}\right)$ catalyst and commercialized bulk $\mathrm{V}_{2} \mathrm{O}_{5}$ powder.

Fig. S5. X-ray diffraction (XRD) spectra of vanadium oxide nanorods ($\mathbf{V}_{\mathbf{n r}}$) catalyst.

Fig. S6. Scanning Electron Microscopy (SEM) image of the vanadium oxide catalyst: (a) the $\mathbf{V}_{\mathbf{n r}}$ catalyst; (b) the $1^{\text {st }}$ recycled $\mathbf{V}_{\mathbf{n r}}$ from $\mathbf{V}_{\mathbf{n r}}$ catalyzed reaction mixtures in normal reaction condition with the addition of PCA.

Fig. S7. ${ }^{51} \mathrm{~V}$ NMR spectra of solutions of vanadium oxide nanorod in ethanol- $d 1$. (a) $\mathbf{V}_{\mathbf{n r}}$ (V content: 0.014 mmol$)(\mathrm{b}) \mathbf{V}_{\mathbf{n r}}(\mathrm{V}$ content: 0.014 mmol$)+35 \%_{2} \mathrm{O}_{2}(2.685 \mathrm{mmol}) ;$ (c) $\mathbf{V}_{\mathbf{n r}}(\mathrm{V}$ content: 0.014 mmol$)+$ PCA $(0.04 \mathrm{mmol})$; (d) $\mathbf{V}_{\mathbf{n r}}(\mathrm{V}$ content:0.014 mmol) + PCA (0.04 $\mathrm{mmol})+35 \% \mathrm{H}_{2} \mathrm{O}_{2}(2.685 \mathrm{mmol})$.

Fig. S8. ${ }^{51}$ V-MAS-NMR experimental spectra of vanadium oxide nanorod $\left(\mathbf{V}_{\mathbf{n r}}\right)$ catalyst.
3. Mechanistic study of catalytic oxidation of benzene to phenol using ${ }^{18} \mathrm{O}_{2}$ or $\mathrm{H}_{2}{ }^{18} \mathrm{O}_{2}$.

Fig. S9. The oxygen-isotopic distribution of PhOH under the reaction mixtures of vanadium catalyst, $\mathbf{V}_{\mathbf{n r}}$ containing (a) $35 \% \mathrm{H}_{2}{ }^{16} \mathrm{O}_{2 \text { (aq) }}$ enriched at 1 atm of ${ }^{18} \mathrm{O}_{2}$ and (b) $35 \% \mathrm{H}_{2}{ }^{18} \mathrm{O}_{2}$ in $\mathrm{H}_{2} \mathrm{O}$ at $1 \mathrm{~atm} \mathrm{~N}_{2}$ in $\mathrm{CH}_{3} \mathrm{CN}$. The reactions were proceeded for 3 h . The ratios of $\mathrm{PhOH}:{ }^{18} \mathrm{O}-\mathrm{PhOH}$ derived from the deconvolution of the mass spec of ${ }^{16} \mathrm{O}$ enriched PhOH were 98:2 and 32:68, respectively; the mass spec of the parent ${ }^{16} \mathrm{O}$ enriched PhOH is represented in (c).

4. Determination of NIH-shift ratios of $4-\left[{ }^{2} \mathbf{H}_{0,1}\right]$ toluene catalyzed by vanadium oxide catalyst in $\mathrm{CH}_{3} \mathrm{CN}$ by the addition of $\mathrm{H}_{2} \mathrm{O}_{2(\text { aq })}$ using GC-MS

Synthesis of $\mathbf{4}-\left[{ }^{2} \mathbf{H}_{\mathbf{0}, 1}\right]$ toluenes:

4- $\left.{ }^{2} \mathrm{H}_{0,1}\right]$ toluenes were synthesized by carrying out a hydrolysis of (4methylphenyl)magnesium bromide, which was prepared by the reaction of 4bromotoluene with magnesium in anhydrous tetrahydrofuran and with $\mathrm{D}_{2} \mathrm{O}$ according to the reported procedure. ${ }^{1}$

Scheme S1. Preparation of $4-\left[{ }^{2} \mathrm{H}_{0,1}\right]$ toluenes.

Fig. S10 (a) toluene

Fig. S10 (b) 4-[$\left.{ }^{2} \mathrm{H}_{0,1}\right]$ toluene

Fig. S10 (c) toluene: $4-\left[{ }^{2} \mathrm{H}_{1}\right]$ toluene $=22 \%: 78 \%$

Scheme S2. Total volume of the reaction solution was 3 mL ; Solvent: acetonitrile; Catalyst: Vanadium oxide nanorod (V content: 0.014 mmol); Substrate: 4[${ }^{2} \mathrm{H}_{0,1}$]toluenes (with a deuterium enrichment of 78%) (4.47 mmol); Oxidant: 35% $\mathrm{H}_{2} \mathrm{O}_{2 \text { (aq) }}(2.685 \mathrm{mmol})$; Reaction time: 3 h ; Temperature: $25^{\circ} \mathrm{C}$.

Fig. S11. The mass spectra of the oxygenated product, $4-\left[{ }^{2} \mathrm{H}_{0,1}\right]$-o-cresols.

$M W=108$
38\%

$M W=109$ 62\%

Fig. S12. The mass spectra of the oxygenated product, $3-\left[{ }^{2} \mathrm{H}_{0,1}\right]-p$-cresol. (Deuterium enrichment (78\%) for the reactant, $4-\left[{ }^{2} \mathrm{H}_{0,1}\right]$ toluenes).

NIH-shift ratio of the deuterium (62%) remaining in the oxidation product 3$\left[{ }^{2} \mathbf{H}_{0,1}\right]-p$-cresols of 4-[$\left.{ }^{2} \mathbf{H}_{0,1}\right]$ toluenes $\mathbf{(7 8 \%}$ deuterium enrichment) $=\mathbf{6 2 \%} / 78 \%=$ 80\%

Reference

1 Y. Morimoto, S. Bunno, N. Fujieda, H. Sugimoto and S. Itoh, J. Am. Chem. Soc., 2015, 137, 5867-5870.

[^0]: *corresponding author:
 E-mail address: sfyu@gate.sinica.edu.tw

