Electronic Supplementary Information (ESI[†])

Selective catalytic oxidation of benzene to phenol by a vanadium oxide (V_{nr}) nanorod catalyst in CH₃CN using H₂O_{2(aq)} and pyrazine-2-carboxylic acid (PCA)

Wondemagegn Hailemichael Wanna,^{a,b} Damodar Janmanchi,^a Natarajan Thiyagarajan,^a Ravirala Ramu,^{a,c} Yi-Fang Tsai,^a Chih-Wen Pao,^d and Steve S.-F. Yu^{a,b,*}

From aInstitute of Chemistry, Academia Sinica, Taipei 11529, Taiwan

- ^bSustainable Chemical Science and Technology, Taiwan International Graduate
 Program (TIGP), National Chiao-Tung University and Academia Sinica, Taiwan
 ^cSree Dattha Institute of Engineering & Science, Hyderabad, Telangana, India-501510
 - ^dNational Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan

*corresponding author:

E-mail address: sfyu@gate.sinica.edu.tw

	TON ^[b]		Total	Va	Vo	OCE	PhOH	$H_{2}O_{2}(\%)$
Catalyst	p-BQ	PhOH	TON ^[c]	[%] ^[d]	[%] ^[e]	[%] ^[f]	[%] ^[g]	remained
V _{nr}	1.75	11.74	13.49	4.21	7.03	12.10	87.03	25
V _{nr} (PCA)	1.30	25.54	26.83	8.37	13.99	63.93	95.17	77
V_2O_5	0.18	5.19	5.37	1.68	2.80	4.91	96.62	41
V ₂ O ₅ (PCA)	0.55	9.58	10.13	3.16	5.28	8.97	94.59	38
VOSO ₄	0.78	8.38	9.16	2.86	4.78	6.50	91.46	20
VOSO ₄ (PCA)	0.58	9.11	9.70	3.03	5.06	7.56	94.00	29
VCl ₃	0.68	6.12	6.80	2.12	3.55	13.13	89.98	70
VCl ₃ (PCA)	0.48	6.93	7.41	2.31	3.86	12.14	93.50	66

Table S1. Oxidation of benzene to *p*-benzoquinone (p-BQ) and phenol (PhOH) catalyzed by the various vanadium catalysts.^[a]

^[a]Conditions: Total volume of the reaction solution was 3 mL; Solvent: acetonitrile; Catalyst: $V_{nr}/V_2O_5/VOSO_4/VCl_3$ (0.014 mmol); Substrate: benzene (4.486 mmol); Oxidant: 35% H₂O₂(aq) (2.685 mmol); PCA (0.04 mmol); Temperature: 25 °C; Time: 5 h. Product quantification was conducted by GC analysis with nitrobenzene as the internal standard. ^[b]Turnover number (TON) for each of the oxygenated products, *p*-BQ and PhOH (mmol), respectively, was determined by calculating the number of millimoles of product per millimole of catalyst (based on V content). ^[c]The total TON of the products (*p*-BQ + PhOH). ^[d]Ys [%]_c = [substrate (mol)/H₂O₂ (mol)]×100^{. [e]}Y₀ [%]_c = [products (mol)/H₂O₂ (mol)]×100. ^[f]Overall catalytic efficiency (OCE) = (2×*p*-BQ + PhOH)[TON]/[H₂O₂ consumed (equiv.)]. ^[g]Selectivity of PhOH = [(PhOH) (mol)/ [*p*-BQ + PhOH] (mol)]×100.

	ТО	N ^[b]						
35%H ₂ O ₂ (mmol)	p-BQ	PhOH	Total TON ^[c]	${ m Y}_{ m S} \ [\%]^{[d]}$	Y ₀ [%] ^[e]	OCE [%] ^[f]	PhOH [%] ^[g]	H ₂ O ₂ (%) remained
0.31	0.06	2.34	2.40	0.75	10.85	13.69	97.42	18
0.67	0.08	13.14	13.22	4.12	27.62	37.98	99.43	27
1.34	0.09	16.99	17.09	5.33	17.85	31.23	99.46	42
2.68	1.30	25.54	26.83	8.37	13.99	63.93	95.17	77
4.64	0.21	6.71	6.92	2.16	2.09	10.35	96.90	79
9.28	0.13	8.26	8.38	2.62	1.26	10.77	98.47	88

Table S2. Oxidation of benzene to *p*-benzoquinone (*p*-BQ) and phenol (PhOH) catalyzed by the vanadium oxide nanorod catalyst (V_{nr}) using various $H_2O_{2(aq)}$ concentrations.^[a]

^[a]Conditions: Total volume of the reaction solution was 3 mL, Solvent: acetonitrile; Catalyst: V_{nr} (V content: 0.014 mmol), Substrate: benzene (4.486 mmol); PCA (0.04 mmol), Temperature: 25 °C; Time: 5 h. Product quantification was conducted by GC analysis with nitrobenzene as the internal standard; ^[b]Turnover number (TON) for each of the oxygenated products, *p*-BQ and PhOH (mmol), respectively, was determined by calculating the number of millimoles of product per millimole of catalyst (based on V content). ^[c]The total TON of the products (*p*-BQ + PhOH). ^[d]Ys [%]_c = [substrate (mol)/H₂O₂ (mol)]×100^{. [e]}Y₀ [%]_c = [products (mol)/H₂O₂ (mol)]×100. ^[f]Overall catalytic efficiency (OCE) = (2×*p*-BQ + PhOH)[TON]/[H₂O₂ consumed. ^[g]Selectivity of PhOH = [(PhOH) (mol)/ [*p*-BQ + PhOH] (mol)]×100. (equiv.)]

	ТО	N ^[b]						
% H ₂ O ₂	p-BQ	PhOH	Total TON ^[c]	${ m Y}_{S} \ [\%]^{[d]}$	Y_{O} [%][e]	OCE [%] ^[f]	PhOH [%] ^[g]	H ₂ O ₂ (%) remained
5	0.09	3.32	3.42	1.07	12.45	25.07	97.26	49
10	0.16	7.03	7.19	2.24	13.13	28.29	97.73	52
20	0.23	10.81	11.04	3.45	10.08	28.92	97.88	64
35	1.30	25.54	26.83	8.37	13.99	63.93	95.17	77

Table S3. Oxidation of benzene to *p*-benzoquinone (*p*-BQ) and phenol (PhOH) catalyzed by the vanadium oxide nanorod catalyst (V_{nr}) using various $H_2O_{2(aq)}$ percentages.^[a]

^[a]Conditions: Total volume of the reaction solution was 3 mL; Solvent: acetonitrile; Catalyst: V_{nr} (V content: 0.014 mmol), Substrate: benzene (4.486 mmol); H₂O_{2(aq)} (260 μ L); PCA (0.04 mmol); Temperature: 25 °C; Time: 5 h. The products were determined using GC analysis with nitrobenzene as the internal standard. ^[b]Turnover number (TON) for each of the oxygenated products, *p*-BQ and PhOH (mmol), respectively, was determined by calculating the number of millimoles of product per millimole of catalyst (based on V content). ^[c]The total TON of the products (*p*-BQ + PhOH). ^[d]Ys [%]_c = [substrate (mol)/H₂O₂ (mol)]×100^{. [e]}Y₀ [%]_c = [products (mol)/H₂O₂ (mol)]×100. ^[f]Overall catalytic efficiency (OCE) = (2×*p*-BQ + PhOH)[TON]/[H₂O₂ consumed (equiv.)]. ^[g]Selectivity of PhOH = [(PhOH) (mol)/ [*p*-BQ + PhOH] (mol)]×100.

	TO	N ^[b]						
Time (h)	<i>p</i> -BQ	PhOH	Total TON ^[c]	Y _S [%] ^[d]	Y _O [%] ^[e]	OCE [%] ^[f]	PhOH [%] ^[g]	H ₂ O ₂ (%) remained
1 min	0.21	0.45	0.67	0.21	0.35	21.95	68.26	98
10 min	0.30	2.33	2.63	0.82	1.37	22.51	88.65	93
20 min	0.34	2.64	2.99	0.93	1.56	19.60	88.45	91
30 min	0.44	2.74	3.18	0.99	1.66	17.22	86.21	89
45 min	0.53	3.21	3.74	1.17	1.95	17.79	85.78	87
1	0.69	9.83	10.52	3.28	5.48	41.49	93.45	86
2	1.09	21.39	22.48	7.01	11.72	69.31	95.16	82
3	1.36	23.03	24.39	7.61	12.72	71.53	94.43	81
5	1.30	25.54	26.83	8.37	13.99	63.93	95.17	77
10	1.26	27.23	28.49	8.89	14.85	39.65	95.59	61
18	0.82	27.23	28.05	8.75	14.62	26.48	97.08	43
24	0.57	27.48	28.04	8.75	14.62	24.88	97.97	40
48	0.37	28.36	28.73	8.97	14.98	21.39	98.72	29

Table S4. Oxidation of benzene to *p*-benzoquinone (*p*-BQ) and phenol (PhOH) catalyzed by the vanadium oxide nanorod catalyst (V_{nr}) in presence of PCA.^[a]

^[a]Conditions: Total volume of the reaction solution was 3 mL; Solvent: acetonitrile; Catalyst: V_{nr} (V content: 0.014 mmol); Substrate: benzene (4.486 mmol); Oxidant: 35% H₂O_{2(aq)} (2.685 mmol); PCA (0.04 mmol); Temperature: 25 °C. The products were determined using GC analysis with nitrobenzene as the internal standard. ^[b]Turnover number (TON) for each of the oxygenated products, *p*-BQ and PhOH (mmol), respectively, was determined by calculating the number of millimoles of product per millimole of catalyst (based on V content). ^[c]The total TON of the products (*p*-BQ + PhOH). ^[d]Y_s [%]_c = [substrate (mol)/H₂O₂ (mol)]×100. ^[e]Y_O [%]_c = [products (mol)/H₂O₂ (mol)]×100. ^[f]Overall catalytic efficiency (OCE) = (2×*p*-BQ + PhOH)[TON]/[H₂O₂ consumed (equiv.)]. ^[g]Selectivity of PhOH = [(PhOH) (mol)/ [*p*-BQ + PhOH] (mol)]×100.

	TON ^[b]		Total	Y _s	Y _o	OCE	PhOH	H ₂ O ₂ (%)
Catalyst	<i>р</i> - ВQ	PhO H	TON ^[C]	[%] ^{[d}]	[%] ^[e]	[%] ^[1]	[%] ^[g]	remained
V _{nr} (w/o PCA)	1.75	11.74	13.49	4.21	7.03	12.10	87.03	25
V_{nr} + (PCA)	1.30	25.54	26.83	8.37	13.99	63.93	95.17	77
1 st recycled V _{nr} (w/o PCA)	1.65	15.73	17.38	5.42	9.06	12.49	90.50	32
1^{st} recycled V_{nr} + (PCA)	2.04	20.34	22.38	6.99	11.67	31.15	90.88	65
2 nd recycled V _{nr} (w/o PCA)	1.89	16.85	18.74	5.85	9.77	13.42	90.00	37
2^{nd} recycled V_{nr} + (PCA)	2.14	20.75	22.90	7.15	11.94	22.30	92.72	54
V _{nr} leaching	-	1.75	1.75	0.03	0.05	2.32	100	57

Table S5. Oxidation of benzene to *p*-benzoquinone (*p*-BQ) and phenol (PhOH) catalyzed by the recycled vanadium oxide nanorod catalyst (V_{nr}) .^[a]

^[a]Conditions: Total volume of the reaction solution was 3 mL; Solvent: acetonitrile; V_{nr} (V content: 0.014 mmol), 1st recycled V_{nr} (V content: 0.012 mmol) ; 2nd recycled V_{nr} (V content: 0.011mmol), the leached V_{nr} (V content: 8.4×10⁻⁴ mmol), Substrate: benzene (4.486 mmol); Oxidant: 35% H₂O_{2(aq)} (2.685 mmol); PCA (0.04 mmol); Temperature: 25 °C; Time: 5 h. The products were determined using GC analysis with nitrobenzene as the internal standard. ^[b]Turnover number (TON) for each of the oxygenated products, *p*-BQ and PhOH (mmol), respectively, was determined by calculating the number of millimoles of product per millimole of catalyst (based on V content). ^[c]The total TON of the products (*p*-BQ + PhOH). ^[d]Y_s [%]_c = [substrate (mol)/H₂O₂ (mol)]×100. ^[e]Y₀ [%]_c = [products (mol)/H₂O₂ (mol)]×100. ^[f]Overall catalytic efficiency (OCE) = (2×*p*-BQ + PhOH)[TON]/[H₂O₂ consumed (equiv.)]. ^[g]Selectivity of PhOH = [(PhOH) (mol)/ [*p*-BQ + PhOH] (mol)]×100.

			TON ^[b]			Total	Ys	\mathbf{Y}_{0}	OCE	sp^2/sp^3	H_2O_2
Catalyst	a	b	c	d	e	TON ^[c]	[%] ^[d]	[%] ^[e]	[%] ^[f]	[%] ^[g]	(%) remained
V _{nr}	3.33	0.74	0.36	1.01	1.13	6.57	2.06	3.43	8.06	44/56	33
V _{nr} (PCA)	6.9	4.6	1.64	4.02	3.41	20.57	6.44	10.73	25.05	58/42	31
V _{nr} (PCA,PPh ₃) ^[h]	4.5	-	3.67	3.82	3.64	15.62	4.89	8.14	12.05	48/52	13

Table S6. Oxidation of toluene to benzaldehyde (**a**), methyl *p*-benzoquinone (**b**) benzyl alcohol (**c**), *o*-cresol (**d**), and *p*-cresol (**e**) catalyzed by the vanadium oxide nanorod catalyst (V_{nr}) .^[a]

^[a]Conditions: Total volume of the reaction solution was 3 mL; Solvent: acetonitrile; V_{nr} (V content: 0.014 mmol); Substrate: toluene (4.47 mmol); Oxidant: 35% H₂O_{2(aq)}(2.685 mmol); PCA (0.04 mmol); Temperature: 25 °C; Time: 5 h. The products were determined using GC analysis with nitrobenzene as the internal standard. ^[b]Turnover number (TON) for each of the oxygenated products, **a**–**e** (mmol), respectively, was determined by calculating the number of millimoles of product per millimole of catalyst (based on V content). ^[c]The total TON of the products (**a**+**b**+**c**+**d**+**e**). ^[d]Y_s [%]_c = [substrate (mol)/H₂O₂ (mol)]×100. ^[e]Y_O [%]_c = [products (mol)/H₂O₂ (mol)]×100. ^[f]Overall catalytic efficiency (OCE) = $(2 \times \mathbf{a} + 2 \times \mathbf{b} + \mathbf{c} + \mathbf{d} + \mathbf{e})$ [TON]/ [H₂O₂ consumed (equiv.)]. ^[g]Selectivity for products, *o*-, *p*-cresols and methyl *p*-BQ = [(c+d+e)(mol)/all oxidation products (mol)]×100. ^[h]PPh₃ was added after 5 h of reaction time and continued stirring for additional 30 min.

Samples	XPS			
	V/O	V^{4+}/V^{5+}		
V _{nr}	0.037	0.301		
$V_{nr(cal)}$	0.274	0.218		
1^{st} recycled $V_{nr} + (PCA)$	0.222	0.639		
V ₂ O ₅ commercial	0.364	0.118		

 Table S7. The XPS characterization of vanadium oxide catalysts.

2. Figures

Fig. S1. The XPS survey spectrum of vanadium oxide nanorod (V_{nr}) catalyst.

Fig. S2. The high-resolution XPS spectra of vanadium oxide nanorod (V_{nr}) catalyst de-convoluted presented for: (a) O 1s and (b) C 1s. (Si-O signal contribution is from the Si sample holder)

Fig. S3. The high-resolution XPS spectra of vanadium oxide catalysts were deconvoluted presented for V 2p3/2. (a) V_{nr} ; (b) calcined V_{nr} ; (c) 1st recycled V_{nr} and (d) V₂O₅ commercial catalyst.

Fig. S4. Thermogravimetric analysis (TGA) diagram of vanadium oxide nanorod (V_{nr}) catalyst and commercialized bulk V_2O_5 powder.

Fig. S5. X-ray diffraction (XRD) spectra of vanadium oxide nanorods (V_{nr}) catalyst.

Fig. S6. Scanning Electron Microscopy (SEM) image of the vanadium oxide catalyst: (a) the V_{nr} catalyst; (b) the 1st recycled V_{nr} from V_{nr} catalyzed reaction mixtures in normal reaction condition with the addition of PCA.

Fig. S7. ⁵¹V NMR spectra of solutions of vanadium oxide nanorod in ethanol-*d*1. (a) V_{nr} (V content: 0.014 mmol) (b) V_{nr} (V content: 0.014 mmol) + 35% H_2O_2 (2.685 mmol); (c) V_{nr} (V content: 0.014 mmol) + PCA (0.04 mmol); (d) V_{nr} (V content:0.014 mmol) + PCA (0.04 mmol); (d) V_{nr} (V content:0.014 mmol) + PCA (0.04 mmol); (d) V_{nr} (V content:0.014 mmol) + PCA (0.04 mmol); (d) V_{nr} (V content:0.014 mmol) + PCA (0.04 mmol); (d) V_{nr} (V content:0.014 mmol) + PCA (0.04 mmol); (d) V_{nr} (V content:0.014 mmol) + PCA (0.04 mmol); (d) V_{nr} (V content:0.014 mmol) + PCA (0.04 mmol); (d) V_{nr} (V content:0.014 mmol) + PCA (0.04 mmol) + 35% H_2O_2 (2.685 mmol).

Fig. S8. ⁵¹V-MAS–NMR experimental spectra of vanadium oxide nanorod (V_{nr}) catalyst.

3. Mechanistic study of catalytic oxidation of benzene to phenol using $^{18}\mathrm{O}_2$ or $\mathrm{H_2}^{18}\mathrm{O}_2.$

Fig. S9. The oxygen-isotopic distribution of PhOH under the reaction mixtures of vanadium catalyst, V_{nr} containing (a) 35% H₂¹⁶O_{2(aq)} enriched at 1 atm of ¹⁸O₂ and (b) 35% H₂¹⁸O₂ in H₂O at 1 atm N₂ in CH₃CN. The reactions were proceeded for 3 h. The ratios of PhOH:¹⁸O-PhOH derived from the deconvolution of the mass spec of ¹⁶O enriched PhOH were 98:2 and 32:68, respectively; the mass spec of the parent ¹⁶O-enriched PhOH is represented in (c).

4. Determination of NIH-shift ratios of $4-[{}^{2}H_{0,1}]$ toluene catalyzed by vanadium oxide catalyst in CH₃CN by the addition of H₂O_{2(aq)} using GC-MS

Synthesis of 4-[²H_{0,1}]toluenes:

 $4-[^{2}H_{0,1}]$ toluenes were synthesized by carrying out a hydrolysis of (4-methylphenyl)magnesium bromide, which was prepared by the reaction of 4-bromotoluene with magnesium in anhydrous tetrahydrofuran and with D₂O according to the reported procedure.¹

Scheme S2. Total volume of the reaction solution was 3 mL; Solvent: acetonitrile; Catalyst: Vanadium oxide nanorod (V content: 0.014 mmol); Substrate: 4- $[^{2}H_{0,1}]$ toluenes (with a deuterium enrichment of 78%) (4.47 mmol); Oxidant: 35% $H_{2}O_{2(aq)}$ (2.685 mmol); Reaction time: 3 h; Temperature: 25°C.

Fig. S11. The mass spectra of the oxygenated product, $4-[^{2}H_{0,1}]$ -o-cresols.

Fig. S12. The mass spectra of the oxygenated product, $3-[^{2}H_{0,1}]$ -*p*-cresol. (Deuterium enrichment (78%) for the reactant, $4-[^{2}H_{0,1}]$ toluenes).

NIH-shift ratio of the deuterium (62%) remaining in the oxidation product 3- $[^{2}H_{0,1}]$ -p-cresols of 4- $[^{2}H_{0,1}]$ toluenes (78% deuterium enrichment) = 62%/78% = 80%

Reference

1 Y. Morimoto, S. Bunno, N. Fujieda, H. Sugimoto and S. Itoh, J. Am. Chem. Soc., 2015, 137, 5867-5870.