Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Electronic Supplementary Information

Experimental evidences for hypercoordination in

triorganotelluronium halides with 2-(Me₂NCH₂)C₆H₄ groups

Anca Beleagă,[‡] Eleonora Denes,[‡] Cristian Silvestru and Anca Silvestru*

Department of Chemistry, Supramolecular Organic and Organometallic Chemistry Centre (SOOMCC), Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania. E-mail: ancas@chem.ubbcluj.ro;

‡ These co-authors have contributed equally to this work.

Scheme S1 Numbering scheme for NMR resonance assignments.

Figure S1. The ¹H NMR (CD₂Cl₂, 300.11 MHz) spectra of [$\{2-(Me_2NCH_2)C_6H_4\}_3Te$]⁺Cl⁻ (7) at +20 °C (**a**), and -30 °C (**b**).

Figure S2. The ¹³C NMR (75.46 MHz) spectra of [$\{2-(Me_2NCH_2)C_6H_4\}_3Te$]⁺Cl⁻ (7) at +20 °C (in CDCl₃) (**a**), and -30 °C (CD₂Cl₂) (**b**).

Figure S3. The ¹H NMR (CD₂Cl₂, 300.11 MHz) spectra of [$\{2-(Me_2NCH_2)C_6H_4\}_2(OH)Te$]⁺Cl⁻ (10) at +20 °C (a), and -80 °C (b).

Figure S4. The ¹³C NMR (CD₂Cl₂, 75.46 MHz) spectrum of [$\{2-(Me_2NCH_2)C_6H_4\}_2(OH)Te$]⁺Cl⁻(10) at -80 °C (a), and expended aliphatic region (b).

$[{2-(Me_2NCH_2)C_6H_4}Ph_2Te]^+Cl^- (1)$

Figure S5. Structures of the $(A_{Te1})(pR_{N1})$ (*left*) and $(C_{Te1'})(pS_{N1'})$ (*right*) cations in the crystal of **1** (for clarity, hydrogen atoms are not shown) [symmetry equivalent atoms (2-x, 2-y, 1-z) are given by "prime"].

Figure S6. Dinuclear association through interactions between $(A_{Te1})(pR_{N1})$ and $(C_{Te1a})(pS_{N1a})$ cations and chloride anions in the crystal of **1**, supported by additional C–H_{methyl}… π (Ph_{centroid}) and C–H…Cl contacts (only hydrogen atoms involved in contacts with heavier atoms or aromatic rings are shown) [symmetry equivalent atoms (2–*x*, 2–*y*, l-z), (l+x, l+y, z) and (l-x, l-y, l-z) are given by "prime", "a" and "b", respectively].

$C(9)-H(9A)_{methyl}\cdots Ph_{centroid}\{C(10')-C(15')\}$	2.91 Å ($\gamma = 5$.	5°)
$C(11)-H(11)_{phenyl}\cdots Cl(1a)$	2.78 Å	$\sum r_{vdW}$ (Cl,H) 3.01
$C(21)-H(21)_{phenyl}\cdots Cl(1b)$	2.86 Å	
$C(7)-H(7A)_{methylene}\cdots Cl(1a)$	2.97 Å	
	$\begin{array}{l} C(9)-H(9A)_{methyl}\cdots Ph_{centroid} \{C(10')-C(15')\} \\ C(11)-H(11)_{phenyl}\cdots Cl(1a) \\ \\ C(21)-H(21)_{phenyl}\cdots Cl(1b) \\ C(7)-H(7A)_{methylene}\cdots Cl(1a) \end{array}$	$\begin{array}{lll} C(9)-H(9A)_{methyl}\cdots Ph_{centroid} \{C(10')-C(15')\} & 2.91 \text{ Å} & (\gamma=5.\\ C(11)-H(11)_{phenyl}\cdots Cl(1a) & 2.78 \text{ Å} \\ \\ C(21)-H(21)_{phenyl}\cdots Cl(1b) & 2.86 \text{ Å} \\ C(7)-H(7A)_{methylene}\cdots Cl(1a) & 2.97 \text{ Å} \end{array}$

A 3D supramolecular architecture is formed through additional C–H···Cl contacts between dinuclear units in the crystal of 1 [symmetry equivalent atoms (x, l+y, z) and (l-x, 2-y, l-z) are given by "d" and "e", respectively]:

$C(14)-H(14)_{phenyl}\cdots Cl(1d)$	2.78 Å
$C(20)-H(20)_{phenyl}\cdots Cl(1e)$	2.92 Å

$[{2-(Me_2NCH_2)C_6H_4}Ph_2Te]^+Cl^- \cdot 0.5CH_2Cl_2 (1 \cdot 0.5CH_2Cl_2)$

Figure S7. Structures of the $(A_{Te1})(pR_{N1})$ (*left, up*) / $(C_{Te1'})(pS_{N1'})$ (*right, up*) and $(A_{Te2'})(pR_{N2'})$ (*left, down*) / $(C_{Te2})(pS_{N2})$ (*right, down*) cations in the crystal of 1.0.5CH₂Cl₂ (for clarity, hydrogen atoms are not shown) [symmetry equivalent atoms (*I*-*x*, *I*-*y*, *I*-*z*) are given by "prime"].

Figure S8. Dinuclear association through interactions between $(A_{Te1})(pR_{N1})$ and $(C_{Te2})(pS_{N2})$ cations and chloride anions in the crystal of 1.0.5CH₂Cl₂. Thermal ellipsoids are drawn at 25% probability (hydrogen atoms are omitted for clarity).

Figure S9. Dinuclear association through interactions between $(A_{Tel})(pR_{N1})$ and $(C_{Te2})(pS_{N2})$ cations and chloride anions in the crystal of 1.0.5CH₂Cl₂, supported by additional C–H_{methyl}··· π (Ph_{centroid}) and C–H···Cl contacts (only hydrogen atoms involved in contacts with heavier atoms or aromatic rings are shown; the CH₂Cl₂ molecule is omitted).

- interatomic distances	$C(9)-H(9A)_{methyl}\cdots Ph_{centroid} \{C(31)-C(36)\}$	2.72 Å ($\gamma = 4.5^{\circ}$)
	$C(8)-H(8B)_{methyl}\cdots Ph_{centroid} \{C(16)-C(21)\}$	2.92 Å ($\gamma = 10.0^{\circ}$)
	$C(15)-H(15)_{phenyl}\cdots Cl(1)$	2.76 Å $\sum r_{vdW}$ (Cl,H) 3.01 Å
	$C(17)-H(17)_{phenyl}\cdots Cl(2)$	2.84 Å
	$C(7)-H(7A)_{methylene}\cdots Cl(1)$	2.90 Å
	$C(36)-H(36)_{phenyl}\cdots Cl(2)$	2.90 Å
	$C(42)-H(42)_{phenvl}\cdots Cl(1)$	2.93 Å

A 3D supramolecular architecture is formed through additional C–H··· π (Ar_{centroid}) and C–H···Cl contacts between dinuclear units in the crystal of 1·0.5CH₂Cl₂ [symmetry equivalent atoms (*1.5–x, 0.5+y, 1.5–z*), (*2–x, 1–y, 2–z*), (–0.5+*x, 1.5–y, -0.5+z*), (*2–x, 1–y, 1–z*), (–*1+x, y, z*) and (0.5+*x, 1.5–y, -0.5+z*) are given by "a", "b", "c", "d", "e" and "f", respectively].

$C(25)-H(25)_{aryl}\cdots Ar_{centroid} \{C(1a)-C(6a)\}$	2.97 Å ($\gamma = 22.5^{\circ}$)
$C(12)-H(12)_{phenyl} \cdots Ar_{centroid} \{C(16b)-C(21b)\}$	$3.06 \text{ Å} (\gamma = 7.2^{\circ})$
$C(43)-H(43B)_{CH2Cl2}\cdots Cl(2c)$	2.61 Å
$C(3)-H(3)_{aryl}\cdots Cl(1d)$	2.74 Å
$C(38)-H(38)_{phenyl}\cdots Cl(3)_{CH2Cl2}$	2.83 Å
$C(35)-H(35)_{phenyl}\cdots Cl(1e)$	2.90 Å
$C(40)-H(40)_{phenyl}\cdots Cl(2f)$	2.96 Å

Figure S10. Structures of the $(C_{\text{Te1}})(pS_{\text{N1}})$ (*left, up*) / $(A_{\text{Te1'}})(pR_{\text{N1'}})$ (*right, up*) and $(A_{\text{Te2}})(pR_{\text{N2}})$ (*left, down*) / $(C_{\text{Te2''}})(pS_{\text{N2''}})$ (*right, down*) cations in the crystal of **3** (for clarity, hydrogen atoms are not shown) [symmetry equivalent atoms (-x, 1-y, -z) and (1-x, -y, 1-z) are given by "prime" and "double prime", respectively].

Figure S11. Dinuclear associations through interactions between pairs of $(C_{\text{Tel}})(pS_{\text{N1}}) / (A_{\text{Tel}'})(pR_{\text{N1}'})$ or $(A_{\text{Te2}})(pR_{\text{N2}'}) / (C_{\text{Te2''}})(pS_{\text{N2''}})$ cations and iodide anions in the crystal of **3**. Thermal ellipsoids are drawn at 25% probability (hydrogen atoms are omitted for clarity) [symmetry equivalent atoms (-x, l-y, -z) and (l-x, -y, l-z) are given by "prime" and "double prime", respectively].

Figure S12. Dinuclear associations through interactions between pairs of $(C_{\text{Te1}})(pS_{\text{N1}}) / (A_{\text{Te1}'})(pR_{\text{N1}'})$ or $(A_{\text{Te2}})(pR_{\text{N2}}) / (C_{\text{Te2''}})(pS_{\text{N2''}})$ cations and iodide anions in the crystal of **3**, supported by additional C–H···I contacts (only hydrogen atoms involved in contacts with heavier atoms) [symmetry equivalent atoms (*-x*, *1–y*, *-z*) and (*1–x*, *-y*, *1–z*) are given by "prime" and "double prime", respectively].

- interatomic distances	$\begin{array}{l} C(11)-H(11)_{phenyl}\cdots I(1) \\ C(21)-H(21)_{phenyl}\cdots I(1') \\ C(7)-H(7B)_{methylene}\cdots I(1) \end{array}$	3.11 Å 3.24 Å 3.27 Å	$\sum r_{vdW}(I,H) 3.35 \text{ Å}$
	$\begin{array}{l} C(32)-H(32)_{phenyl}\cdots I(2)\\ C(42)-H(42)_{phenyl}\cdots I(2'')\\ C(28)-H(28A)_{methylene}\cdots I(2) \end{array}$	3.12 Å 3.20 Å 3.22 Å	

A 3D supramolecular architecture is formed through additional C-H···I contacts between dinuclear units in the crystal of **3** [symmetry equivalent atoms (x, 0.5-y, 0.5+z) and (-x, 0.5+y, -0.5-z) are given by "a" and "b", respectively].

$C(35a)$ - $H(35a)_{phenyl}$ ···· $I(2)$	3.21 Å
$C(25b)-H(25b)_{aryl}\cdots I(1)$	3.24 Å
$C(19a)-H(19a)_{phenyl}\cdots I(2)$	3.30 Å

$[\{2-(Me_2NCH_2)C_6H_4\}_2PhTe]^+Cl^-\cdot H_2O (4\cdot H_2O)$

Figure S13. Structures of the $(C_{\text{Tel}})(pR_{\text{N1},p}S_{\text{N2}})$ (or Λ_{Tel}) (*left*) and $(A_{\text{Tel}'})(pS_{\text{N1}',p}R_{\text{N2}'})$ (or Δ_{Tel}) (*right*) cations in the crystal of **4**·H₂O (for clarity, hydrogen atoms are not shown) [symmetry equivalent atoms (*l*-*x*, *l*-*y*, -*z*) are given by "prime"].

Figure S14. Dinuclear association through interactions between $(C_{Te1})(pR_{N1},pS_{N2})$ and $(A_{Te1'})(pS_{N1'},pR_{N2'})$ cations and chloride anions in the crystal of $4 \cdot H_2O$, supported by additional $C-H_{methy1}\cdots\pi$ (Ph_{centroid}), $C-H_{pheny1}\cdots C1$ and $C-H_{methy1}\cdots O$ contacts (only hydrogen atoms involved in contacts with heavier atoms or aromatic rings are shown) [symmetry equivalent atoms (*1-x, 1-y, -z*) are given by "prime"].

- interatomic distances	$C(17)-H(17B)_{methyl}\cdots Ph_{centroid} \{C(19)-C(24)\}$	$3.00 \text{ Å} (\gamma =$	= 13.2°)
	$C(24)-H(24)_{phenyl}\cdots Cl(1)$	2.91 Å	$\sum r_{vdW}$ (Cl,H) 3.01 Å
	$O(1)-H(2)\cdots Cl(1)$	2.42 Å	
	$O(1)-H(1)\cdots Cl(1')$	2.43 Å	
	$C(18)-H(18C)\cdots O(1')$	2.40 Å	∑ <i>r</i> _{vdW} (O,H) 2.60 Å

A 3D supramolecular architecture is formed through additional C–H··· π (Ar_{centroid}) and C–H···Cl contacts between dinuclear units in the crystal of 4·H₂O [symmetry equivalent atoms (*x*, 1+*y*, *z*), (1–*x*, 0.5+*y*, 0.5–*z*) and (1+*x*, *y*, *z*) are given by "a", "b" and "c", respectively].

$C(13)-H(13)_{aryl}\cdots Ar_{centroid} \{C(1a)-C(6a)\}$	$3.09 \text{ Å} (\gamma = 21.6^{\circ})$
$C(21b)-H(21b)_{phenyl}\cdots Cl(1)$	2.87 Å
$C(3c)-H(3c)_{aryl}\cdots Cl(1)$	2.94 Å

Figure S15. Structures of the $(A_{Te1})(pS_{N1},pR_{N2})$ (or Δ_{Te1}) (*left*) and $(C_{Te1'})(pR_{N1'},pS_{N2'})$ (or Λ_{Te1}) (*right*) cations in the crystal of **5**·H₂O (for clarity, hydrogen atoms are not shown) [symmetry equivalent atoms (–*x*, –*y*, *1*–*z*) are given by "prime"].

Figure S16. Dinuclear association through $C-H_{phenyl}\cdots\pi$ (Ar_{centroid}) interactions between $(A_{Te1})(pS_{N1},pR_{N2})$ and $(C_{Te1'})(pR_{N1'},pS_{N2'})$ cations in the crystal of **5**·H₂O, including additional $C-H_{methyl}\cdots\pi$ (Ph_{centroid}) and $C-H_{methyl}\cdots\pi$ (Ar_{centroid}) intra-cation contacts (only hydrogen atoms involved in contacts with aromatic rings are shown) [symmetry equivalent atoms (-x, -y, l-z), are given by "prime"].

- interatomic distances	$C(20)-H(20)_{phenyl}\cdots Ar_{centroid} \{C(1')-C(6')\}$	2.82 Å ($\gamma = 17.7^{\circ}$)
	$C(9)-H(9C)_{methyl}\cdots Ar_{centroid} \{C(10)-C(15)\}$	$3.03 \text{ Å} (\gamma = 21.4^{\circ})$
	$C(18)$ -H(18B) _{methyl} ···Ph _{centroid} { $C(19)$ -C(24)}	$3.05 \text{ Å} (\gamma = 16.6^{\circ})$

Figure S17. {Br₂(H₂O)₂} rectangular units bridging $(A_{Te1})(pS_{N1},pR_{N2})$ and $(C_{Te1'})(pR_{N1'},pS_{N2'})$ cations from different dinuclear associations through C–H···Br contacts in the crystal of **5**·H₂O (only hydrogen atoms involved in contacts with heavier atoms or aromatic rings are shown; for clarity, C–H··· π intra-cation contacts are not shown) [symmetry equivalent atoms (–*x*, –*y*, *1*–*z*), (–*1*–*x*, –*y*, –*z*), (–*1*+*x*, *y*, *z*), (–*x*, –*y*, –*z*), (–*x*, –*y*, *z*), (–*x*, *z*), (–*x*, *z*), (–*x*, *z*), (–*x*, *z*), (–

- interatomic distances	$C(17)-H(17A)_{methyl}\cdots Br(1b)$	2.94 Å	$\sum r_{vdW}(Br,H)$ 3.15 Å
	$C(9)-H(9B)_{methyl}\cdots Br(1b)$	3.04 Å	_ , ,
	$O(1e)-H(101e)\cdots Br(1b)$	2.54 Å	
	$O(1d)-H(100d)\cdots Br(1b)$	2.72 Å	

A 3D supramolecular architecture is formed through additional C–H_{aryl}···Br and C–H_{methylene}···Br contacts between dinuclear units in the crystal of $\mathbf{5}$ ·H₂O [symmetry equivalent atoms (-1+x, y, z), (-x, -y, -z) and (-0.5+x, 0.5-y, -0.5+z) are given by "b", "c" and "f", respectively].

$C(3f)-H(3f)_{aryl}\cdots Br(1b)$	2.96 Å	$\sum r_{vdW}(Br,H) 3.15 \text{ Å}$
$C(13b)-H(13b)_{aryl}\cdots Br(1b)$	2.97 Å	
C(16Bc)-H(H16Bc) _{methylene} ····Br(1b)	3.14 Å	

$[{2-(Me_2NCH_2)C_6H_4}_2PhTe]^+I^-$ (6)

Figure S18. Structures of the $(A_{Te1})(pS_{N1},pR_{N2})$ (or Δ_{Te1}) (*left*) and $(C_{Te1'})(pR_{N1'},pS_{N2'})$ (or Λ_{Te1}) (*right*) cations in the crystal of **6** (for clarity, hydrogen atoms are not shown) [symmetry equivalent atoms (1-x, 1-y, -z) are given by "prime"].

Figure S19. View along *c* axis of a chain of alternating $(A_{Te1})(pS_{N1},pR_{N2})$ cations and iodide anions based on C-H_{phenyl}...I contacts in the crystal of **6** (only hydrogen atoms involved in contacts with heavier atoms or aromatic rings) [symmetry equivalent atoms (0.5-x, -0.5+y, 0.5-z) and (0.5-x, 0.5+y, 0.5-z) are given by "a" and "b", respectively].

- interatomic distances
$$C(8)-H(8C)_{methyl}\cdots Ar_{centroid} \{C(10)-C(15)\}$$
 3.00 Å ($\gamma = 20.4^{\circ}$)
 $C(23)-H(23)_{nhenyl}\cdots I(1a)$ 3.14 Å $\Sigma r_{vdW}(I,H)$ 3.35 Å

A 3D supramolecular architecture is formed through additional C–H···I contacts between chains of alternating $(A_{Te1})(pS_{N1},pR_{N2})$ cations and iodide anions and $(C_{Te1'})(pR_{N1'},pS_{N2'})$ cations and iodide anions in the crystal of **6** [symmetry equivalent atoms (-0.5+x, 1.5-y, -0.5+z) and (1-x, 1-y, -z) are given by "a" and "prime", respectively].

$C(3a)-H(3a)_{aryl}\cdots I(1)$	3.23 Å	$\sum r_{vdW}$ (I,H) 3.35 Å
$C(8')-H(8B')_{methyl}\cdots I(1)$	3.25 Å	
$C(17')-H(17B')_{methyl}\cdots I(1)$	3.27 Å	

$[{2-(Me_2NCH_2)C_6H_4}_{3}Te]^+Cl^-\cdot H_2O$ (7 H₂O)

Figure S20. Structure of the $(\Lambda_{Te1})(pS_{N1},pS_{N1'},pS_{N1''})$ cation (*M* isomer) in the crystal of 7·H₂O (for clarity, hydrogen atoms are not shown) [symmetry equivalent atoms (1-y, 2+x-y, z) and (-1-x+y, 1-x, z) are given by "prime" and "double prime", respectively].

Figure S21. Fragment of the 3D supramolecular architecture built through C–H···Cl and O–H···Cl interactions between $(\Lambda_{Te1})(pS_{N1,p}S_{N1',p}S_{N1''})$ cations, chloride anions and H₂O molecules in the crystal of 7·H₂O (hydrogen atoms, except those involved in contacts to chloride anion, are omitted for clarity) [symmetry equivalent atoms (*1–y*, 2+x–y, z), (–*1–*x+y, *1–x*, z) and (–0.33+x, 0.33+y, (–0.66+z) are given by "prime", "double prime" and "a", respectively].

$C(9)-H(9B)_{methyl}\cdots Cl(1a)$	2.84 Å	$\sum r_{vdW}$ (Cl,H) 3.01 Å
$C(4)-H(4)_{arvl}\cdots Cl(1)$	2.85 Å	
$O(1b)\cdots Cl(1b)$	3.27 Å	$\sum r_{vdW}(O,Cl) 3.06 \text{ Å}$

$[{2-(Me_2NCH_2)C_6H_4}_2(OH)Te]^+Cl^-$ (10)

Figure S22. Structures of the $(A_{Te1})(pR_{N1},pS_{N2})$ (or Λ_{Te1}) (*left*) and $(C_{Te1'})(pS_{N1'},pR_{N2'})$ (or Δ_{Te1}) (*right*) cations in the crystal of **10** (for clarity, hydrogen atoms are not shown) [symmetry equivalent atoms (2-x, 2-y, -z) are given by "prime"].

Figure S23. Dinuclear association through interactions between $(A_{Te1})(pR_{N1},pS_{N2})$ and $(C_{Te1'})(pS_{N1'},pR_{N2'})$ cations and chloride anions in the crystal of **10**, including additional C–H_{methyl}… π (Ar_{centroid}) and C–H_{aryl}…O intra-cation contacts (only hydrogen atoms involved in contacts with heavier atoms or aromatic rings are shown) [symmetry equivalent atoms (2–x, 2–y, –z), (x, 1+y, z) and (2–x, 1–y, –z) are given by "prime", "a" and "b", respectively].

- interatomic distances	$C(9)$ -H(9B) _{methyl} ···Ar _{centroid} { $C(10)$ -C(15)}	$3.08 \text{ Å} (\gamma =$	= 24.5°)
-	$O(1')-H(1')\cdots Cl(1b)$	2.43 Å	$\sum r_{vdW}$ (Cl,H) 3.01 Å
	$C(8)$ – $H(8B)_{methyl}$ ···Cl(1b)	2.72 Å	
	C(18)-H(18B) _{methyl} ···Cl(1b)	2.76 Å	
	$C(6)-H(6)\cdots O(1)$	2.46 Å	∑ <i>r</i> _{vdW} (O,H) 2.60 Å

A 3D supramolecular architecture is formed through additional C–H··· π (Ar_{centroid}) and C–H···Cl contacts between dinuclear units in the crystal of **10** [symmetry equivalent atoms (2–*x*, *1*–*y*, –*z*), (*1.5–x*, –0.5+*y*, 0.5–*z*), (0.5+*x*, 1.5–*y*, 0.5+*z*) and (0.5+*x*, 1.5–*y*, -0.5+*z*) are given by "b", "c", "d" and "e", respectively].

$C(3c)-H(3c)_{aryl}\cdots Ar_{centroid} \{C(10)-C(15)\}$	2.78 Å ($\gamma = 12.3^{\circ}$)
$C(13d)-H(13d)_{arvl}\cdots Ar_{centroid} \{C(1)-C(6)\}$	2.78 Å ($\gamma = 0.8^{\circ}$)
$C(8b)$ – $H(8Ab)_{methyl}$ ···Cl(1b)	2.92 Å
$C(14e)-H(14e)_{aryl}\cdots Cl(1b)$	2.93 Å

	1 / CCDC 1912124	1.0.5CH ₂ Cl ₂ / CCDC 1912126	3 / CCDC 1912130	4 ·H ₂ O / CCDC 1912127
Crystal data				
Empirical formula	C ₂₁ H ₂₂ ClNTe	$C_{43}H_{46}Cl_4N_2Te_2$	C ₂₁ H ₂₂ INTe	C ₂₄ H ₃₁ ClN ₂ OTe
Formula weight, g/mol	451.45	987.82	542.89	526.56
Crystal system	triclinic	monoclinic	monoclinic	monoclinic
Space group	ΡĪ	P2 ₁ /n	P2 ₁ /c	P2 ₁ /c
a, Å	9.6231(11)	9.0570(7)	23.610(3)	9.0364(7)
b, Å	10.2676(12)	27.374(2)	8.9780(10)	9.9969(8)
c, Å	11.9457(14)	17.6459(14)	20.371(2)	27.008(2)
α , °	70.809(2)	90	90	90
β , °	72.969(2)	92.215(2)	104.827(2)	93.4240(10)
y, °	69.253(2)	90	90	90
Volume, Å ³	1021.4(2)	4371.6(6)	4174.3(8)	2435.4(3)
Z	2	4	8	4
Density (calculated), g/cm ³	1.468	1.501	1.728	1.436
Absorption coefficient, mm ⁻¹	1.589	1.610	2.906	1.348
F(000)	448	1960	2080	1064
Crystal size, mm	$0.11 \times 0.19 \times 0.23$	$0.19 \times 0.22 \times 0.30$	$0.16 \times 0.18 \times 0.19$	$0.08 \times 0.45 \times 0.53$
Data collection				
Temperature, K	297	297	297	297
Wavelength, Å	0.71073	0.71073	0.71073	0.71073
Theta range for data collection, °	1.8 to 26.0	1.4 to 26.4	0.89 to 25.00	1.5 to 26.4
Dataset	$\pm 11; \pm 12; \pm 14$	±11; ±34; ±22	±28; ±10; ±24	$\pm 11; \pm 12; \pm 33$
Reflections collected / unique data / R(int)	7986 / 3953 / 0.026	34994 / 8937 / 0.050	39109 / 7357 / 0.064	19041 / 4973 / 0.041
Observed Data $[I > 2.0\sigma(I)]$	3594	7191	5846	4543
Refinement				
Absorption correction	Semi-empirical from equivalents			
Refinement method	Full-matrix least-squares on F^2			
Data / restrains / parameters	3953 / 0 / 219	8937 / 0 / 464	7357 / 0 / 437	4973 / 0 / 274
R / wR2 / S	0.0326 / 0.0722 / 1.03	0.0606 / 0.1274 / 1.16	0.0697 / 0.1247 / 1.25	0.0333 / 0.0772 / 1.09
Largest diff. peak and hole, $e/Å^3$	0.72 and -0.26	0.98 and -0.93	0.90 and -1.45	0.64 and -0.52

Table S1. Crystal and structural refinement data for compounds 1, $1 \cdot 0.5$ CH₂Cl₂, 3 and $4 \cdot$ H₂O.

	5 ·H ₂ O / CCDC 1912128	6 / CCDC 1912131	7·H ₂ O / CCDC 1912129	10 / CCDC 1912125
Crystal data				
Empirical formula	$C_{24}H_{31}BrN_2OTe$	$C_{24}H_{29}IN_2Te$	C ₂₇ H ₃₆ ClN ₃ OTe	C ₁₈ H ₂₅ ClN ₂ OTe
Formula weight, g/mol	571.02	599.99	581.64	448.45
Crystal system	monoclinic	monoclinic	trigonal	monoclinic
Space group	P2 ₁ /n	$P2_1/n$	R3	$P2_1/n$
a, Å	9.9565(14)	15.6120(12)	13.3319(14)	11.058(2)
b, Å	17.087(3)	10.4144(8)	13.3319(14)	10.259(2)
c, Å	14.892(2)	16.0155(12)	13.020(3)	17.370(4)
α, °	90	90	90	90
β , °	92.924(3)	110.882(1)	90	100.320(4)
γ, °	90	90	120	90
Volume, Å ³	106.707(2)	2432.9(3)	2004.1(7)	1938.5(7)
Z	4	4	3	4
Density (calculated), g/cm ³	1.563	1.638	1.446	1.536
Absorption coefficient, mm ⁻¹	2.889	2.503	1.237	1.678
F(000)	1136	1168	888	896
Crystal size, mm	$0.26 \times 0.32 \times 0.34$	$0.24 \times 0.25 \times 0.30$	$0.19 \times 0.20 \times 0.21$	$0.22\times0.33\times0.38$
Data collection				
Temperature, K	297	297	297	294
Wavelength, Å	0.71073	0.71073	0.71073	0.71073
Theta range for data collection, °	2.2 to 26.4	2.3 to 26.4	2.4 to 26.4	2.3 to 25.0
Dataset	±12; ±21; -18/17	±19; ±13; -19/20	$\pm 16; \pm 16; \pm 16$	±13; ±12; ±20
Reflections collected / unique data / R(int)	19115 / 4958 / 0.041	19053 / 4959 / 0.032	7026 / 1822 / 0.052	17848 / 3394 / 0.063
Observed Data $[I > 2.0\sigma(I)]$	4377	4588	1803	2890
Refinement				
Absorption correction	Semi-empirical from equivalents			
Refinement method	Full-matrix least-squares on F^2			
Data / restrains / parameters	4958 / 3 / 274	4959 / 0 / 257	1822 / 1 / 117	3394 / 0 / 212
R / wR2 / S	0.0400 / 0.0846 / 1.13	0.0407 / 0.0839 / 1.21	0.0296 / 0.0263 / 1.02	0.0366 / 0.0737 / 1.05
Flack x	-	-	-0.011(19)	-
Largest diff. peak and hole, $e/Å^3$	0.76 and -0.76	0.81 and -0.74	0.94 and -0.24	0.49 and -0.47

Table S2. Crystal and structural refinement data for compounds $5 \cdot H_2O$, 6, $7 \cdot H_2O$ and 10.