Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Electronic Supplementary Information

K₂[B₄O₅(OH)₄]·H₂O and K₂[B₄O₅(OH)₄]: Two New Hydrated Potassium Borates with Isolated [B₄O₅(OH)₄]^{2–} Units and Different Structural Frameworks

Tingting Shi,^{a,b,#} Fangfang Zhang,^{a,b,#} Abudukadi Tudi,^{a,b} Zhihua Yang^{a,b} and Shilie Pan^{a,b,*}

^aCAS Key Laboratory of Functional Materials and Devices for Special Environments; Xinjiang Technical Institute of Physics & Chemistry, CAS; Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China.

^bCenter of Materials Science and Optoelectronics Engineering, University of Chinese

Academy of Sciences, Beijing 100049, China.

[#]These authors contributed equally to this work.

*Corresponding author: slpan@ms.xjb.ac.cn

Formula	Space group	Two-fold axis in FBB	Reference
Na ₂ [B ₄ O ₅ (OH) ₄]·3H ₂ O	<i>R</i> 32	Yes	[28a]
$Na_2[B_4O_5(OH)_4]\cdot 8H_2O$	$C2/_{\rm C}$	Yes	[28b]
$K_2[B_4O_5(OH)_4]\!\cdot\!2H_2O$	P212121	No	[15]
Rb ₂ [B ₄ O ₅ (OH) ₄]·3.6H ₂ O	Pbcn	No	[28c]
$Rb_4[B_4O_5(OH)_4]_2 \cdot 3H_2O$	Pbcn	No	[28d]
$Cs_2[B_4O_5(OH)_4] \cdot 3H_2O$	<i>P</i> 2 ₁ /c	No	[27]
$Rb_2Ca[B_4O_5(OH)_4]_2 \cdot 8H_2O$	P212121	No	[9]
NaCs[B ₄ O ₅ (OH) ₄]·4H ₂ O	$P2_1/c$	No	[11]
$K_2Ca[B_4O_5(OH)_4]_2 \cdot 8H_2O$	$P2_{1}2_{1}2_{1}$	No	[28e]
$K_2Sr[B_4O_5(OH)_4]_2{\cdot}10H_2O$	P na 2_1	No	[28f]
$K_{1.67}Na_{0.33}[B_4O_5(OH)_4]\cdot 3H_2O$	pē2c	Yes	[28g]
$Cs_2Ca[B_4O_5(OH)_4]_2$ ·8H ₂ O	P2 ₁ 2 ₁ 2 ₁	No	[10]
$(NH_4)_2[B_4O_5(OH)_4] \cdot 2H_2O$	<i>P</i> 2 ₁	No	[28h]
$(NH4)_2Ca[B_4O_5(OH)_4]_2 \cdot 8H_2O$	P212121	No	[28f]
$Mg(H_2O)_5B_4O_5(OH)_4{\cdot}2H_2O$	pl	No	[28i]
$NH_4[Co(NH_3)_5(H_2O)][B_4O_5(OH)_4]_2 \cdot 6H_2O$	Pnma	No	[28j]
$Na_6[B_4O_5(OH)_4]_3 \cdot 8H_2O$	<i>R32</i>	Yes	[28k]
$K_2B_4O_5(OH)_4$ · $H_2O(I)$	$p\bar{1}$	No	Tittle compound
K ₂ B ₄ O ₅ (OH) ₄ (II)	Pbcn	Yse	Tittle compound

Table S1 Hydrated tetraborates with isolated $[B_4O_5(OH)_4]^{2-}$ FBBs.

Compounds	Atoms	X	У	Z	U _{eq}	BVS
	K(1)	2068(1)	5901(1)	1999(1)	24(1)	1.1
	K(2)	927(1)	1178(1)	1995(1)	27(1)	1.1
	B(1)	1485(3)	2378(4)	5679(3)	20(1)	3.1
	B(2)	2580(3)	1168(3)	8513(3)	16(1)	3.0
	B(3)	2905(3)	4305(3)	8280(3)	17(1)	3.0
	B(4)	4565(3)	2672(3)	6529(3)	16(1)	3.0
	O(1)	4101(2)	4334(2)	7052(2)	19(1)	1.9
т	O(2)	2571(2)	5775(2)	8844(2)	24(1)	1.2
1	O(3)	2509(2)	-517(2)	9855(2)	21(1)	1.2
	O(4)	2026(2)	2895(2)	8963(2)	18(1)	2.0
	O(5)	6456(2)	2478(2)	5873(2)	21(1)	1.0
	O(6)	4520(2)	996(2)	7895(2)	15(1)	1.6
	O(7)	3059(2)	3030(2)	5243(2)	20(1)	1.9
	O(8)	189(2)	2654(3)	4438(2)	33(1)	1.2
	O(9)	1120(2)	1477(2)	7221(2)	21(1)	2.1
	O(10)	4579(3)	2334(2)	2489(2)	31(1)	0.2
	K(1)	6396(1)	6684(1)	674(1)	26(1)	1.1
	B(1)	9540(3)	6396(5)	1589(2)	15(1)	3.0
	B(2)	6666(3)	9746(5)	3088(3)	18(1)	3.1
п	O(1)	5859(2)	2623(3)	658(2)	18(1)	1.3
11	O(2)	6604(2)	10172(3)	1983(2)	18(1)	2.1
	O(3)	7231(2)	6031(3)	-1438(2)	25(1)	1.2
	O(4)	4391(2)	10001(3)	1232(2)	19(1)	1.9
	O(5)	10000	7678(4)	2500	13(1)	1.5

Table S2 Atomic coordinates (\times 10⁴), equivalent isotropic displacement parameters (Å² × 10³), and bond valence sums (BVS) for I and II. U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

		Ι			
K(1)-O(10)	2.7897(17)	K(2)-O(9)#5	2.7309(16)	B(1)-O(7)	1.348(3)
K(1)-O(1)#1	2.8386(14)	K(2)-O(4)#3	2.7553(15)	B(1)-O(9)	1.358(3)
K(1)-O(3)#2	2.8601(16)	K(2)-O(3)#3	2.7746(15)	B(1)-O(8)	1.389(3)
K(1)-O(2)#3	2.8773(15)	K(2)-O(8)	2.8097(17)	B(2)-O(3)	1.439(3)
K(1)-O(4)#4	2.8907(14)	K(2)-O(2)#4	2.8690(16)	B(2)-O(6)	1.474(3)
K(1)-O(9)#4	2.9069(14)	K(2)-O(3)#5	3.2597(15)	B(2)-O(9)	1.493(2)
K(1)-O(7)	2.9242(15)	K(2)-O(5)#6	2.9664(16)	B(2)-O(4)	1.505(3)
K(1)-O(5)#1	2.9962(16)	K(2)-O(10)	3.0779(19)		
K(1)-O(8)	3.263(2)	K(2)-O(6)#6	3.2502(13)		
B(4)-O(6)	1.441(3)	B(3)-O(4)	1.358(3)		
B(4)-O(1)	1.498(3)	B(3)-O(1)	1.373(3)		
B(4)-O(5)	1.456(3)	B(3)-O(2)	1.385(3)		
B(4)-O(7)	1.501(2)				
O(10)-K(1)-O(1)#1	68.36(5)	O(1)#1-K(1)-O(3)#2	78.85(4)	O(1)#1-K(1)-O(2)#3	100.92(4)
O(10)-K(1)-O(3)#2	126.38(5)	O(10)-K(1)-O(4)#4	126.24(5)	O(3)#2-K(1)-O(2)#3	71.16(4)
O(10)-K(1)-O(2)#3	74.81(5)	O(1)#1-K(1)-O(4)#4	165.40(4)	O(10)-K(1)-O(9)#4	154.24(5)
O(2)#3-K(1)-O(9)#4	124.30(4)	O(3)#2-K(1)-O(4)#4	90.56(4)	O(1)#1-K(1)-O(9)#4	118.08(4)
O(4)#4-K(1)-O(9)#4	49.13(4)	O(2)#3-K(1)-O(4)#4	84.87(4)	O(3)#2-K(1)-O(9)#4	78.83(4)
O(10)-K(1)-O(7)	59.74(4)	O(1)#1-K(1)-O(7)	72.12(4)	O(3)#2-K(1)-O(7)	144.57(4)
O(2)#3-K(1)-O(7)	133.56(4)	O(1)#1-K(1)-O(5)#1	48.80(4)	O(9)#4-K(1)-O(5)#1	69.85(4)
O(4)#4-K(1)-O(7)	113.55(4)	O(3)#2-K(1)-O(5)#1	75.54(4)	O(7)-K(1)-O(5)#1	70.18(4)
O(9)#4-K(1)-O(7)	97.17(4)	O(2)#3-K(1)-O(5)#1	139.02(5)	O(10)-K(1)-O(8)	71.37(5)
O(10)-K(1)-O(5)#1	108.30(5)	O(4)#4-K(1)-O(5)#1	118.98(4)	O(1)#1-K(1)-O(8)	115.08(4)
O(3)#2-K(1)-O(8)	161.80(5)	O(9)#5-K(2)-O(3)#3	83.38(4)	O(3)#3-K(2)-O(2)#4	121.79(4)
O(2)#3-K(1)-O(8)	114.87(5)	O(4)#3-K(2)-O(3)#3	52.09(4)	O(8)-K(2)-O(2)#4	69.67(5)
O(4)#4-K(1)-O(8)	73.48(4)	O(9)#5-K(2)-O(8)	103.00(5)	O(9)#5-K(2)-O(5)#6	72.66(4)
O(9)#4-K(1)-O(8)	84.01(4)	O(4)#3-K(2)-O(8)	127.86(5)	O(4)#3-K(2)-O(5)#6	117.97(4)
O(7)-K(1)-O(8)	43.70(4)	O(3)#3-K(2)-O(8)	167.16(5)	O(3)#3-K(2)-O(5)#6	77.29(4)
O(5)#1-K(1)-O(8)	104.22(4)	O(9)#5-K(2)-O(2)#4	91.57(5)	O(8)-K(2)-O(5)#6	93.82(5)
O(9)#5-K(2)-O(4)#3	124.61(4)	O(4)#3-K(2)-O(2)#4	87.55(4)	O(2)#4-K(2)-O(5)#6	154.38(5)
O(9)#5-K(2)-O(10)	149.76(5)	O(4)#3-K(2)-O(6)#6	75.17(4)	O(4)#3-K(2)-O(3)#5	85.15(4)
O(4)#3-K(2)-O(10)	74.22(4)	O(3)#3-K(2)-O(6)#6	55.45(4)	O(3)#3-K(2)-O(3)#5	70.36(5)
O(3)#3-K(2)-O(10)	94.78(5)	O(8)-K(2)-O(6)#6	111.72(4)	O(8)-K(2)-O(3)#5	122.05(4)
O(8)-K(2)-O(10)	74.04(5)	O(2)#4-K(2)-O(6)#6	158.98(5)	O(2)#4-K(2)-O(3)#5	65.65(4)
O(2)#4-K(2)-O(10)	114.36(5)	O(5)#6-K(2)-O(6)#6	45.01(4)	O(5)#6-K(2)-O(3)#5	111.64(4)
O(5)#6-K(2)-O(10)	77.48(4)	O(10)-K(2)-O(6)#6	49.80(4)	O(10)-K(2)-O(3)#5	159.28(4)
O(9)#5-K(2)-O(6)#6	107.98(4)	O(9)#5-K(2)-O(3)#5	45.70(4)	O(6)#6-K(2)-O(3)#5	123.28(4)
O(7)-B(1)-O(9)	124.36(18)	O(3)-B(2)-O(9)	108.28(16)	O(6)-B(4)-O(5)	111.44(16)
O(7)-B(1)-O(8)	116.2(2)	O(9)-B(2)-O(4)	107.00(16)	O(6)-B(4)-O(1)	108.36(16)
O(9)-B(1)-O(8)	119.4(2)	O(4)-B(3)-O(1)	122.67(19)	O(5)-B(4)-O(1)	109.65(17)
O(3)-B(2)-O(6)	111.57(17)	O(4)-B(3)-O(2)	118.42(19)	O(6)-B(4)-O(7)	109.92(16)
O(6)-B(2)-O(9)	109.70(16)	O(1)-B(3)-O(2)	118.9(2)		

Table S3 Bond lengths (Å) and angles (°) for I and II.

O(3)-B(2)-O(4)	111.09(16)	O(5)-B(4)-O(7)	108.90(16)		
O(6)-B(2)-O(4)	109.08(17)	O(1)-B(4)-O(7)	108.52(15)		
Symmetry transforma	tions used to ge	nerate equivalent a	itoms:		
#1 -x+1, -y+1, -z+1	#2 x, y+1, z-1	#3 x, y, z-1			
#4 -x, -y+1, -z+1	#5 -x, -y, -z+1	#6 -x+1, -y, -	z+1		
#7 -x, -y+1, -z	#8 x, y, z+1	#9 x, y-1, z+1	l		
			П		
K(1)-O(3)	2.718(3)	K(1)-O(4)#4	3.278(3)	B(1)-O(5)	1.466(3)
K(1)-O(1)	2.748(3)	K(1)-O(1)#3	2.870(3)	B(1)-O(4)#1	1.493(4)
K(1)-O(2)#1	2.768(3)	K(1)-O(4)	3.078(3)	B(2)-O(4)#8	1.365(4)
K(1)-O(2)	2.807(3)	B(1)-O(2)#1	1.499(4)	B(2)-O(2)	1.362(4)
K(1)-O(1)#2	2.843(3)	B(1)-O(1)#3	1.443(4)	B(2)-O(3)#7	1.363(4)
O(3)-K(1)-O(1)	84.24(7)	O(3)-K(1)-O(2)#	1 104.13(8)	O(1)-K(1)-O(2)#1	78.24(7)
O(3)-K(1)-O(2)	129.30(7)	O(2)#1-K(1)-O(2	1)#2 167.77(6)	O(2)-K(1)-O(1)#3	75.62(6)
O(1)-K(1)-O(2)	145.73(7)	O(2)-K(1)-O(1)#	2 104.19(7)	O(1)#2-K(1)-O(1)#3	138.70(5)
O(2)#1-K(1)-O(2)	85.56(7)	O(3)-K(1)-O(1)#	3 73.85(6)	O(3)-K(1)-O(4)	121.77(6)
O(3)-K(1)-O(1)#2	75.60(8)	O(1)-K(1)-O(1)#	3 114.01(6)	O(1)-K(1)-O(4)	124.69(8)
O(1)-K(1)-O(1)#2	89.60(6)	O(2)#1-K(1)-O(2	1)#3 50.37(7)	O(2)#1-K(1)-O(4)	128.68(7)
O(2)-K(1)-O(4)	48.63(6)	O(1)#2-K(1)-O(4	4) 57.96(7)	O(1)#3-K(1)-O(4)	119.72(7)
O(3)-K(1)-O(4)#4	61.83(7)	O(4)-K(1)-O(4)#	60.73(7)	O(5)-B(1)-O(2)#1	109.0(2)
O(1)-K(1)-O(4)#4	127.09(7)	O(1)#3-B(1)-O(5	5) 110.2(2)	O(4)#1-B(1)-O(2)#1	109.0(2)
O(2)#1-K(1)-O(4)#4	145.33(6)	O(1)#3-B(1)-O(4	4)#1 109.4(2)	O(2)-B(2)-O(3)#7	121.8(3)
O(2)-K(1)-O(4)#4	81.94(8)	O(5)-B(1)-O(4)#	1 109.9(2)	O(2)-B(2)-O(4)#8	121.6(2)
O(1)#2-K(1)-O(4)#4	45.41(5)	O(1)#3-B(1)-O(2	2)#1 109.4(2)	O(3)#7-B(2)-O(4)#8	116.6(3)
O(1)#3-K(1)-O(4)#4	95.10(6)				
Symmetry transforma	tions used to ge	nerate equivalent a	itoms:		
#1 -x+3/2, y-1/2, z	#2 -x+	1, -y+1, -z	#3 -x+3/2, y+1/2, z		
#4 -x+1, -y+2, -z	#5 x-1/	/2, -y+3/2, -z	#6 x+1/2, -y+3/2, -z	I	
#7 -x+3/2, -y+3/2, z+	1/2 #8 -x+	1, y, -z+1/2	#9 -x+3/2, -y+3/2, z	z-1/2 #10 -x+2, y, -z+	1/2

Compounds	D−H···A	$d_{ m (D-H)}$	$d_{(\mathrm{H}\cdots\mathrm{A})}$	$d_{(\mathrm{D}\cdots\mathrm{A})}$	<(D-H···A)
	O(10)-H(1)O(6) #6	0.861(16)	1.812(16)	2.669(2)	173(2)
	O(10)-H(2)O(7)	0.848(15)	2.116(18)	2.848(2)	144(2)
	O(2)-H(3)O(10) #1	0.817(16)	2.016(17)	2.821(2)	168(2)
	O(5)-H(5)O(1) #1	0.823(17)	2.037(18)	2.837(2)	164(2)
Ι	O(3)-H(6)O(6) #10	0.811(17)	2.043(18)	2.8345(18	3) 165(3)
	Symmetry transformat	ions used to generate	e equivalent atoms:		
	#1 -x+1, -y+1, -z+1	#2 x, y+1, z-1	#3 x, y, z-1		
	#4 -x, -y+1, -z+1	#5 -x, -y, -z+1	#6 -x+1, -y, -z+1		
	#7 -x, -y+1, -z	#8 x, y, z+1	#9 x, y-1, z+1	#10 -x+	1, -y, -z+2
	O(3)-H(2)O(5) #9	0.850(19)	1.94(2)	2.748(3)	159(4)
	O(1)-H(1)O(4) #2	0.841(19)	2.04(2)	2.876(3)	170(4)
	Symmetry transformat	ions used to generate	e equivalent atoms:		
II	#1 -x+3/2, y-1/2, z	#2 -x+1, -y+1, -z	#3 -x+3/2, y+1	/2, z	#4 -x+1, -y+2, -z
	#5 x-1/2, -y+3/2, -z	#6 x+1/2, -y+3/2,	-z #7 -x+3/2, -y+3	3/2, z+1/2	#8 -x+1, y, -z+1/2
	#9 -x+3/2, -y+3/2, z-1/	2 #10 -x+2, y, -z	+1/2		

donor; A, hydrogen bond acceptor.

Table S5 Bonding electron density difference ($\Delta \rho$) of different units calculated by the REDA method in I and II.

Compounds	Units	Δho
	[BO ₃] ³⁻	0.01047
I	$[BO_4]^{5-}$	0.0008379
	[OH] [_]	0.003361
	[BO ₃] ³⁻	0.01294
Π	$[BO_4]^{5-}$	0.0002131
	[OH] [_]	0.007358

Figure S1. Coordination environments of the K(1) and K(2) cations for I.

Figure S2. Coordination environment of the K(1) cation for II.