Electronic Supplementary Information

Facile and Green Synthesis of Highly Fluorescent Nitrogen-doped Carbon Dots from Jackfruit seeds and Its Applications Towards Fluorimetric Detection of Au³⁺ Ions in Aqueous Media and In Vitro Multicolor Cell Imaging

Kaviyarasan Raji, Vadivel Ramanan and Perumal Ramamurthy*

National Centre for Ultrafast Processes, University of Madras, Taramani Campus, Chennai - 600113, Tamil Nadu, India.

*Corresponding author E-mail Address: prm60@hotmail.com

CONTENTS

Table S1	:	Slope method for the calculation of fluorescence quantum yield
Table S2	:	Parameters obtained from the fitting of fluorescence decays at various emission wavelengths (λ_{ex} : 375 nm) LED.
Table S3	:	Comparison of CDs with other fluorescence probes reported so far towards the detection of Au^{3+} .
Figure S1	:	Zeta potential of the N-CDs
Figure S2	:	Normalized PL spectra of N-CDs excited at various wavelengths.
Figure S3	:	Slope method for the calculation of fluorescence quantum yield
Figure S4		TEM image of aggregated N-CDs in the presence of Au ³⁺ ions.
Figure S5	:	EDAX spectrum of AuNPs.

Fig. S1 Zeta potential of the N-CDs,

Fig. S2 Normalized PL spectra of N-CDs excited at various wavelengths.

Quantum Yield Calculation (QY)

In the case Quinine sulfate (QS, $0.1N H_2SO_4$ as solvent; Known QY=0.54) was chosen as standard. The QY of N-CDs (in water) was calculated by slope method.

From the integrated photoluminescence intensity and the absorbance value [several values (less than 0.1 at excitation wavelength) built the curve] of the samples with that of the references.

The equation is:

$$QY_{sam} = QY_{ref} (K_{sam}/K_{ref})(n_{sam}/n_{ref})^2$$

Where, K is the slope determined by the curves and n is the refractive index. The subscript "ref" refers to the standards and "sam" refers to the unknown samples. For these aqueous solutions, $n_{sam}/n_{ref}=1$.

Fig. S3 Slope method for the calculation of fluorescence quantum yield.

Table S1 Slop	pe method for t	he calculation	of fluorescence c	juantum yield.
---------------	-----------------	----------------	-------------------	----------------

Fluorescer	Slope	QY	QY (%)	Reduced R ²
Quinine Sulphate	$1.21 \ge 10^{10}$	0.546	54.60 (Known)	0.99
N-CDs	3.75 x 10 ⁹	0.1791	17.91	0.99

Table S2 Parameters obtained from the fitting of fluorescence decays at various emission wavelengths (λ_{ex} : 375 nm) LED.

S.	λ	τ_1 (ns)	$\tau_{2}(ns)$	τ_2 (ns)	$A_{1}(\%)$	$A_{2}(\%)$	$A_{2}(\%)$	τ_{Ava} (ns)	γR^2
No	em	1	2	3	1	2	5	Avg	~~~
1	400	0.53	2.47	7.86	18.42	46.69	34.69	1.71	1.02
2	425	0.53	2.57	8.30	16.42	46.18	37.40	1.87	1.06
3	450	0.38	2.40	8.19	12.78	44.19	43.03	1.75	1.19
4	475	0.57	2.65	8.25	13.13	44.27	42.60	2.23	1.21
5	500	0.51	2.57	8.17	12.61	44.67	42.72	2.13	1.07
6	525	0.51	2.50	8.15	13.46	44.40	42.14	2.04	1.15
7	550	0.50	2.48	8.00	15.35	44.71	39.94	1.87	1.24
8	575	0.45	2.36	7.83	16.58	46.25	37.17	1.64	1.14
9	600	0.40	2.27	7.81	18.93	47.07	34.00	1.40	1.20

Table S3. Comparison of CDs with other fluorescence probes reported so far towards the detection of Au^{3+} .

S. No.	Fluorescence Probe	Solvent	LOD	Ref.
1	Rhodamine-based	0.01 M TBAPF ₆ in	11.40 μM	1
	modified polyacrylic acid	DMSO	·	
2	4-propargylamino-1,8-naphthalimide based probe	PBS buffer (4%	8.44 μM	2
		C ₂ H ₅ OH)		
3	Graphene Oxide-Poly(vinyl alcohol) Hybrid	Water	1.40 μM	3
	material			
4	Fluorol Red GK	CH ₃ CN-HEPES buffer	1.23 μM	4
5	Rhodamine-based	0.01 M TBAPF ₆ in	850 nM	1
	modified polyacrylic acid-coated FeNPs	DMSO		
6	Graphene oxide-poly(vinyl alcohol)	Water	700 nM	5
	Hybrid			
7	Thioamide-phenyl-substituted alkyne	phosphate	390 nM	6
		buffer/ C_2H_5OH (3:7,		
		pH 7.0)		
8	Aryl alkyne compound	C ₂ H ₅ OH	325 nM	7
9	Rhodamine-alkyne derivative	C ₂ H ₅ OH-HEPES	320 nM	8
		buffer (0.01 M,		
		pH 7.4) (1:1, v/v)		
10	Bodipy derivative	PBS buffer (50 %	320 nM	9
		ethanol)		
11	Rhodamine-based semicarbazide	PBS buffer (0.3%	290 nM	10
		DMF)		
12	N-CDs	Water	239nM	This Work
13	Thiocoumarin derivative	CH ₃ CN-acetate buffer	111 nM	11
		solution (1:1, v/v)		
14	Rhodamine-based semicarbazide	PBS buffer (10%	74 nM	10
		CH ₃ OH)		
15	N-CDs	Water	64 nM	Ref. 40 in the
				main article
16	1,8-naphthalimide-alkyne conjugate	CH ₃ OH (5% H ₂ O v/v)	NA	12
17	CDs	Water	53 nM	Ref. 25 in the
				main article
18	Rhodamine based probe	PBS buffer (1%	50 nM	13
		CH.OH)		
10	COD	Water	50 mM	Dof 15 in the
19	אעשט	vv ater	30 nM	Rei. 45 in the
				main article

Fig. S4 a-c) TEM image of aggregated N-CDs in the presence of Au^{3+} ions.

Fig. S5 EDAX spectrum of AuNPs.

References:

- N. Niamsa, C. Kaewtong, W. Srinonmuang, B. Wanno, B. Pulpoka and T. Tuntulani, *Polymer Chemistry*, 2013, 4, 3039-3046.
- J. Y. Choi, G.-H. Kim, Z. Guo, H. Y. Lee, K. Swamy, J. Pai, S. Shin, I. Shin and J. Yoon, Biosensors and Bioelectronics, 2013, 49, 438-441.
- A. Kundu, R. K. Layek, A. Kuila and A. K. Nandi, ACS applied materials & interfaces, 2012, 4, 5576-5582.
- 4. Y. Yang, C. Yin, F. Huo and J. Chao, RSC Advances, 2013, 3, 9637-9640.
- A. Kundu, R. K. Layek, A. Kuila and A. K. Nandi, ACS applied materials & interfaces, 2012, 4, 5576-5582.
- 6. X. Cao, W. Lin and Y. Ding, *Chemistry–A European Journal*, 2011, **17**, 9066-9069.
- J. H. Do, H. N. Kim, J. Yoon, J. S. Kim and H.-J. Kim, Organic letters, 2010, 12, 932-934.
- M. J. Jou, X. Chen, K. Swamy, H. N. Kim, H.-J. Kim, S.-g. Lee and J. Yoon, *Chemical Communications*, 2009, 7218-7220.
- 9. J.-B. Wang, Q.-Q. Wu, Y.-Z. Min, Y.-Z. Liu and Q.-H. Song, *Chemical Communications*, 2012, **48**, 744-746.
- 10. L. Yuan, W. Lin, Y. Yang and J. Song, Chemical Communications, 2011, 47, 4703-4705.
- 11. J. E. Park, M. G. Choi and S.-K. Chang, Inorganic chemistry, 2012, 51, 2880-2884.
- 12. M. Dong, Y.-W. Wang and Y. Peng, Organic letters, 2010, 12, 5310-5313.
- 13. Y.-K. Yang, S. Lee and J. Tae, Organic letters, 2009, 11, 5610-5613.