Eco-friendly Porous Iron (III) Oxides Micromotors for

Efficient Wastewater Cleaning

Xia Peng, Hongli Zhu, Huijun Chen, Xiaomiao Feng*, Ruiqing Liu, Zhendong Huang, Qingming Shen, Yanwen Ma* and Lianhui Wang

Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing210023, China.

E-mail: iamxmfeng@njupt.edu.cn; iamywma@njupt.edu.cn

Fig S1 Effect of Fe_2O_3 micromotors with different concentration in 1% $H_2O_2(a)$ and pH on the adsorption of MB in 1% H_2O_2 and 7mg mL⁻¹Fe₂O₃(b).

Video S1 Comparison of catalytic properties of PB and Fe_2O_3 micromotors in 10% H_2O_2 and 0.33% Triton X-100.

Video S2 Self-propelled movement of Fe_2O_3 micromotors in 1%-10% H_2O_2 and 0.33% Triton X-100.

Video S3 Movement of Fe_2O_3 micromotors under applied magnetic field in 3% H_2O_2 solution and 0.33% Triton X-100.

Video S4 Movement of Fe₂O₃ micromotors during different timeperiods of 0, 30, 60,

90and120 min in 7% H₂O₂ solution and 0.33% Triton X-100.

Video S5 Effect of H₂O₂ on adsorption of methyl blue.

Video S6 Comparative experiments on adsorption of methyl blue by Fe_2O_3 micromotors in $0.1\%H_2O_2$.