Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information for

Diarylethene-based conjugated polymer networks for ultrafast photochromic films

Qiu-Ting Fu,[†]*^a Xiaodong Yan*,[†]*^a Tao Li*,^{*a} Xin-Yue Zhang*,^{*a*} Yue He,^{*a*} Wen-Da Zhang,^{*a*} Yong Liu,^{*a*} Yunxing Li,^{*a*} and Zhi-Guo Gu^{*a,b}</sup>

^{a.} Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China ^{b.} International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China

‡ These authors contributed equally to this work.

E-mail: zhiguogu@jiangnan.edu.cn

Table of contents

1. NMR and IR spectra of DEA-CHO and MC	S2
2. PXRD patterns	S6
3. N ₂ adsorption/desorption isotherms	S7
4. TGA profiles	S7
5. Reaction conditions	S8
6. Stability in 6 M HCl and NaOH solution	S9
7. UV-vis-NIR absorption spectra of DEA-CHO and MC	S10
8. XPS spectra	S12
9. UV-vis-NIR absorption spectrum of PMMA	S13
10. Single-crystal diffraction data	S14

Fig. S2 ¹³C NMR spectrum of DEA-CHO.

Fig. S3 FT-IR spectrum of DEA-CHO.

Fig. S4 Synthesis of MC.

Fig. S5 ¹H NMR spectrum of MC.

Fig. S6 ¹³C NMR spectrum of MC.

Fig. S7 FT-IR spectrum of MC.

Fig. S8 Powder X-ray diffraction (PXRD) patterns of MC.

Fig. S9 PXRD patterns of (a) DPP-1 and (b) DPP-2.

Fig. S10 N_2 adsorption/desorption isotherms of (a) DPP-1 and (b) DPP-2.

Fig. S11 TGA profiles of (a) DPP-1 and (b) DPP-2 under N_2 atmosphere.

Entry	Solvent combination and ratio	Catalyst	Temperat ure (°C)	Reaction time (days)	XRD results
-		3~6 M HOAc			
1	Mesitylene/Dioxane=10:0~0:10	or 0.06-0.15	120~180	5~7	amorphous
		mmol TsOH			
		3~6 M HOAc			
2	Mesitylene/EtOH=10:0~0:10	or 0.06-0.15	120~180	5~7	amorphous
		mmol TsOH			
		3~6 M HOAc			
3	Mesitylene/MeOH=10:0~0:10	or 0.06-0.15	120~180	5~7	amorphous
		mmol TsOH			
		3~6 M HOAc			
4	Mesitylene/o-DCB=10:0~0:10	or 0.06-0.15	120~180	5~7	amorphous
		mmol TsOH			
		3~6 M HOAc			
5	o-DCB/BuOH=10:0~0:10	or 0.06-0.15	120~180	5~7	amorphous
		mmol TsOH			
		3~6 M HOAc			
6	o-DCB/EtOH=10:0~0:10	or 0.06-0.15	120~180	5~7	amorphous
		mmol TsOH			
		3~6 M HOAc			
7	DMAC/Mesitylene=10:0~0:10	or 0.06-0.15	120~180	5~7	amorphous
		mmol TsOH			
		3~6 M HOAc			
8	DMAC/Dioxane=10:0~0:10	or 0.06-0.15	120~180	5~7	amorphous
		mmol TsOH			
		3~6 M HOAc			
9	DMAC/o-DCB=10:0~0:10	or 0.06-0.15	120~180	5~7	amorphous
		mmol TsOH			

Table S1 Screening of synthesis conditions of DPP-1 and DPP-2.

We have made a lot of efforts to test a serious of reaction conditions through controlling the solvents composition and ratio range, catalyst, reaction temperature and reaction time. Detailed conditions are as follows. The total amount of solvent was 2 mL, and solvent ratio included 10:0, 9:1, 7:1, 5:1, 3:1, 1:1, 1:3, 1:5, 1:7, 1:9, 0:10. For catalyst, the total amount of HOAc catalyst was 0.2 mL, and concentration included 3, 4, 5, 6 M; the amount of TsOH included 0.06, 0.09, 0.12, 0.15 mmol. Temperature included 120, 140, 160, 180 °C. Reaction time included 5, 6, 7 days. However, the experiment results were disappointing, and the products checked by the XRD all shown amorphous structure. The screening of the reaction conditions was based on whether the product could undergo photochromism and photochromic properties. For **DPP-1**, the optimum reaction conditions were mesitylene/dioxane = $5:1, 3 \text{ M} \text{ HOAc}, 120 \,^{\circ}\text{C}$ for 5 days. For **DPP-2**, the optimum reaction conditions were o-DCB/EtOH = $1:3, 0.12 \text{ mmol} \text{ TsOH}, 120 \,^{\circ}\text{C}$ for 5 days.

Fig. S12 FT-IR spectra of **DPP-1**: pristine (black); treated in 6 M HCl solution for 5 days (red); treated in 6 M NaOH solution for 5 days (blue).

Fig. S13 FT-IR spectra of **DPP-2**: pristine (black); treated in 6 M HCl solution for 5 days (red); treated in 6 M NaOH solution for 5 days (blue).

Fig. S14 (a) Molecular structures of the open and closed forms of DEA-CHO. (b) Time-dependent UV-vis-NIR absorption spectra of DEA-CHO upon irradiation with UV light ($\lambda = 365$ nm).

Fig. S15 (a) Molecular structures of the open and closed forms of MC. (b) Timedependent UV-vis-NIR absorption spectra of MC upon irradiation with UV light ($\lambda = 365$ nm).

Fig. S16 (a) XPS survey spectrum of DPP-1. (b) XPS survey spectrum of DPP-2.

Fig. S17 S 2p XPS spectrum of **DPP-2** before (a) and after (b) UV irradiation at 365 nm for 5 min.

Fig. S18 UV-vis-NIR absorption spectrum of PMMA.

	DEA-CHO	MC
Formula	$C_{17}H_{10}F_6O_2S_2$	$C_{67}H_{48}C_{10}F_6N_2S_20.5(C_4H_8O)$
Fw	424.37	1095.24
<i>T</i> (K)	153	173
λ (Å)	0.71073	0.71073
Crystal system	orthorhombic	monoclinic
Space group	Pbcn	C2/c
<i>a</i> (Å)	12.065(3)	39.4752(11)
<i>b</i> (Å)	8.649(2)	9.6754(3)
<i>c</i> (Å)	16.450(4)	28.3165(9)
α (°)	90	90
β (°)	90	99.622(3)
γ (°)	90	90
$V(Å^3)$	1716.6(7)	10663.0(6)
Z	4	8
D_{calc} (g/cm ³)	1.642	1.364
$\mu \ (\mathrm{mm}^{-1})$	0.382	0.169
F (000)	856	4560
heta (°)	2.5-25.5	2.3-27.0
	$-10 \le h \le 14$	-50≤ h ≤47
index ranges	$-10 \le k \le 10$	-12≤ k ≤12
	- 19≤1≤12	- 34≤1≤36
reflections collected	7129	53316
GOF (F^2)	1.034	1.079
R_I^a , wR_2^b (I>2 σ (I))	0.0352, 0.0720	0.0531, 0.1526
R_1^{a} , wR_2^{b} (all data)	0.0620, 0.0823	0.0708, 0.1623

Table S2 Summary of crystallographic data for DEA-CHO and MC.

 $R_{I^{a}} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma F_{o}|. \ w R_{2}{}^{b} = [\Sigma w (F_{o}{}^{2} - F_{c}{}^{2})^{2} / \Sigma w (F_{o}{}^{2})]^{1/2}$

DEA-CHO						
S1-C5	1.721(3)	C4-C7	1.468(3)			
S1-C8	1.717(2)	C4-C4_a	1.348(4)			
F1-C1	1.341(9)	C5-C6	1.365(3)			
F2-C1	1.357(9)	C5-C9	1.453(3)			
F3-C2	1.348(7)	C6-C7	1.418(3)			
F4-C2	1.339(10)	C7-C8	1.383(3)			
F5-C3	1.358(9)	C8-C10	1.496(3)			
F6-C3	1.356(8)	C1-C4_a	1.527(7)			
O1-C9	1.211(3)	C2-C3	1.533(9)			
C1-C2	1.536(9)	C3-C4	1.482(7)			
	MC					
S1-C6	1.721(2)	C1-C2	1.342(3)			
S1-C9	1.715(2)	C2-C3	1.501(3)			
S2-C37	1.720(2)	C3-C4	1.541(4)			
S2-C40	1.717(2)	C4-C5	1.531(4)			
F1-C3	1.348(4)	C6-C7	1.363(3)			
F2-C3	1.351(4)	C7-C8	1.431(3)			
F3-C4	1.332(5)	C8-C9	1.370(3)			
F4-C4	1.338(4)	C11-C12	1.386(3)			
F5-C5	1.349(4)	C12-C13	1.384(3)			
F6-C5	1.370(4)	C13-C14	1.401(3)			
N1-C10	1.263(3)	C14-C17	1.549(2)			
N1-C11	1.425(2)	C17-C24	1.549(2)			

Table S3 Selected bond lengths [Å] and angles $[\circ]$ for DEA-CHO and MC.

Symmetry transformations used to generate equivalent atoms for DEA-CHO: a = 1-x, y, 3/2-z.