SUPPORTING INFORMATION

Estimation of hydrogen sulfide from crude petroleum: A unique invention using a simple chemosensor

Shampa Kundu & Prithidipa Sahoo* Department of Chemistry, Visva-Bharati University, Santiniketan-731235, India.

1. NMR Studies:

Fig. S1 ¹H NMR of Compound A in DMSO-d₆ (400 MHz).

¹³C NMR of Compound A in DMSO-d₆:

Fig. S2 ¹³C NMR of Compound A in DMSO-d₆ (400 MHz).

¹H NMR of NPSI in DMSO-d₆:

Fig. S3 ¹H NMR of NPSI in DMSO-d₆ (400 MHz).

¹³C NMR of NPSI in DMSO-d₆:

Fig. S4 $^{13}\mathrm{C}$ NMR of NPSI in DMSO-d_6 (400 MHz).

2. Mass spectrum of NPSI :

3. Job's plot for determining the stoichiometry of interaction by fluorescence method:

Fig. S6 Job's plot of interaction of **NPSI** with H_2S in acetonitrile-water (1:8, v/v), neutral pH(10 mM phosphate buffer), ([**NPSI**] = [H_2S] = 1 μ M) by fluorescence method.

4. Calculation of binding constants of NPSI towards H₂S:

Fig. S7 Linear regression analysis for the calculation of binding constant values of **NPSI** towards H₂S.

The association const. (K_a) of **NPSI** for sensing H₂S was determined from the equation: $K_a = \text{intercept/slope}$. From the linear fit graph we get intercept=0.00475, slope = 2.16637×10⁻⁸. Thus we get, $K_a = (0.00475) / (2.16637×10⁻⁸) = 0.22 × 10^6 \text{ M}^{-1}$.

5. Calculation of limit of detection (LOD) of NPSI with H₂S:

The detection limit of the chemosensor **NPSI** for H_2S was calculated on the basis of fluorescence titration. To determine the standard deviation for the fluorescence intensity, the emission intensity of four individual receptors without H_2S was measured by 10 times and the standard deviation of blank measurements was calculated.

The limit of detection (LOD) of **NPSI** for sensing H_2S was determined from the following equation².

$$LOD = K \times SD/S$$

Where K = 2 or 3 (we take 3 in this case); SD is the standard deviation of the blank receptor solution; S is the slope of the calibration curve.

Fig. S8 Linear fit curve of NPSI with respect to H_2S concentration. Standard deviation are represented by error bars (n=3).

From the linear fit graph we get slope = 4.44305×10^8 , and SD value is 7.344

Thus using the above formula we get the Limit of Detection = 4.96×10^{-8} M, i.e 49.6 nM. Therefore **NPSI** can detect H₂S up to this very lower concentration by fluorescence technique.

6. pH titration curve of NPSI upon gradual addition of H₂S:

Fig. S9 Fluorescence responses of probe NPSI (black) and NPSI-H₂S (red) in different pH conditions in CH_3CN/H_2O (1:8, v/v).

7. Partial HRMS of the mixed assay system:

Fig. S10 Partial HRMS spectra of NPSI-H₂S mixture in acetonitrile, taken after two hours of mixing.

Details	NPSI	NPSI-1
Calculation method	B3LYP	B3LYP
Basis set	6-311G**	6-311G**
E(CAM-B3LYP) (a.u.)	-1066.707	-1466.141
Charge, Multiplicity	0, 1	0, 1
Solvent (CPCM)	Water	Water

8. Details of energy calculations using Density Functional Theory (DFT):

Table S1. Details of the geometry optimization in Gaussian 09 program.

Fig. S11. Energy optimized geometries of **NPSI** and **NPSI-1** obtained at the B3LYP/6-311G** levels of theory with CPCM solvation (H₂O).

Table S2. Selected electronic excitation energies (eV), oscillator strengths (f), main configurations of the low-lying excited states of all the molecules and complexes. The data were calculated by TDDFT//B3LYP/6-311G(d,p) based on the optimized ground state geometries.

Molecules	Electronic Transition	Excitation Energya ^a	f ^b	Composition ^c (%)
NPSI	$S_0 \rightarrow S_2$	3.66 eV 338.66 nm	0.3239	$\text{H-1} \rightarrow \text{L} (60\%)$
	$S_0 \rightarrow S_5$	4.05 eV 305.90 nm	0.2305	$H \rightarrow L+1 (49\%)$
NPSI-1	$S_0 \rightarrow S_3$	3.44 eV 370.02 nm	0.2591	H -1 → L (68.6%)
	$S_0 \rightarrow S_{20}$	3.4997 eV 225.44 nm	0.1973	$H - 9 \rightarrow L (51\%)$

^aOnly selected excited states were considered. The numbers in parentheses are the excitation energy in wavelength. ^bOscillator strength. ^cH stands for HOMO and L stands for LUMO.

Table S3. Energies of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO)

Species	E _{HOMO} (a.u)	E _{LUMO} (a.u)	ΔE(a.u)	ΔE(eV)	∆E(kcal/mol)
NPSI	-0.24646	-0.09788	0.14858	4.05	93.39
NPSI-1	-0.24909	-0.1097	0.13939	3.79	87.47