Electronic Supplementary Information

Water-soluble diboronic acid-based fluorescent sensors

recognizing D-sorbitol

Guiqian Fang,^{‡a, b, c, d} Zhancun Bian,^{‡a, b, c, d} Daili Liu, ^{a, b, c, d} Guiying Wu,^{a, b, c, d} Hao Wang,^{a, b, c, d} Zhongyu Wu^{*a, b, c, d} and Qingqiang Yao^{*a, b, c, d}

a. School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250200, Shandong, China

b. Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China

c. Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, China

d. Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan 250062, Shandong, China

*Corresponding authors: E-Mail: wu_med@foxmail.com (Zhongyu Wu), yao_imm@163.com (Qingqiang Yao).

These author contributed equally.

Table of Contents

- 1. UV-vis absorption spectra of sensor 1, 2 and 15c
- 2. Fluorescence properties of sensors
- 3. Copies of NMR (¹H and ¹³C) and HRMS spectra

UV-vis absorption spectra of sensor 1, 2 and 15c

Fig. S1 UV-vis absorption spectra of sensor 1, 2 and 15c DMSO/PBS (pH 9, 0.1M) solution (1:99, v/v), at room temperature.

Fluorescence properties of sensors

Fig. S2 A) Fluorescence spectra of sensor **1** (1×10^{-5} M) in the presence of different concentrations of D-sorbitol in DMSO/PBS (pH 9, 0.1M) solution (1:99, v/v), at room temperature; B) The photograph of sensor **1** linear range. C) Benesi-Hildebrand plot of sensor **1**1/(*I* - *I*₀) *versus* 1/[D-sorbitol].

The calculation process of LOD :

I=9545110*c*+247.19996

 $R^2 = 0.98522$

S=9545110

$$\delta = \sqrt{\frac{\Sigma (F_i - F_0)^2}{N - 1}} = 4.87 \text{ (N=5) K=3}$$

LOD =K × δ/S =1.53×10⁻⁶ M

Fig. S3 A) Fluorescence spectra of sensor **15a** (1×10^{-5} M) in the presence of different concentrations of D-sorbitol in DMSO/PBS (pH 9, 0.1M) solution (1:99, v/v), at room temperature; B) The photograph of sensor **15a** linear range. C) Benesi-Hildebrand plot of sensor **15a**1/(*I* - *I*₀) *versus* 1/[D-sorbitol].

The calculation process of LOD:

I=18502600*c*+482.6485

 $R^2 = 0.9763$

S=18502600

$$\delta = \sqrt{\frac{\Sigma (F_i - F_0)^2}{N - 1}} = 5.02 \text{ (N=5) K=3}$$

LOD =K × δ/S =8.14×10⁻⁷ M

Fig. S4 A) Fluorescence spectra of sensor **15b** (1×10^{-5} M) in the presence of different concentrations of D-sorbitol in DMSO/PBS (pH 9, 0.1M) solution (1:99, v/v), at room temperature; B) The photograph of sensor **15b** linear range. C) Benesi-Hildebrand plot of sensor **15b** 1/(*I* - *I*₀) versus 1/[D-sorbitol].

The calculation process of LOD :

I=17165000*c*+442.93993

 $R^2 = 0.98234$

S=17165000

$$\delta = \sqrt{\frac{\Sigma (F_i - F_0)^2}{N - 1}} = 4.37 \text{ (N=5) K=3}$$

LOD =K × δ/S =7.64×10⁻⁷ M

Fig. S5 A) Fluorescence spectra of sensor **15c** (1×10^{-5} M) in the presence of different concentrations of D-sorbitol in DMSO/PBS (pH 9, 0.1M) solution (1:99, v/v), at room temperature; B) The photograph of sensor **15c** linear range. C) Benesi-Hildebrand plot of sensor **15c**1/(*I* - *I*₀) *versus* 1/[D-sorbitol].

The calculation process of LOD :

I=17508000*c*+394.88005

 $R^2 = 0.98496$

S=17508000

$$\delta = \sqrt{\frac{\Sigma(F_i - F_0)^2}{N - 1}} = 4.03 \text{ (N=5) K=3}$$

LOD =K × δ/S =6.91×10⁻⁷ M

Fig. S6 A) Fluorescence spectra of sensor **15d** (1×10^{-5} M) in the presence of different concentrations of D-sorbitol in DMSO/PBS (pH 9, 0.1M) solution (1:99, v/v), at room temperature; B) The photograph of sensor **15d** linear range. C) Benesi-Hildebrand plot of sensor **15d**1/(*I* - *I*₀) versus 1/[D-sorbitol].

The calculation process of LOD : *I*=13811700*c*+297.94058 *R*²=0.99553 *S*=13811700

$$\delta = \sqrt{\frac{\Sigma (F_i - F_0)^2}{N - 1}} = 5.63 \text{ (N=5) K=3}$$

LOD =K × δ/S =1.22×10⁻⁶ M

Fig. S7 A) Fluorescence spectra of sensor **15e** $(1 \times 10^{-5} \text{ M})$ in the presence of different concentrations of D-sorbitol in DMSO/PBS (pH 9, 0.1M) solution (1:99, v/v), at room temperature; B) The photograph of sensor **15e** linear range. C) Benesi-Hildebrand plot of sensor **15e** $1/(I - I_0)$ versus 1/[D-sorbitol].

The calculation process of LOD : *I*=17942500*c*+423.81207

 $R^2=0.9815$

S=17942500

$$\delta = \sqrt{\frac{\Sigma(F_i - F_0)^2}{N - 1}} = 3.28 \text{ (N=5) K=3}$$

LOD = $K \times \delta/S$ =5.48×10⁻⁷ M

Fig. S8 Fluorescence spectra of sensor **2** (1×10^{-5} M) in the presence of different carbohydrates (from 0 to 13×10^{-5} M) in DMSO/PBS (pH 9, 0.1M) solution (1:99, v/v), at room temperature.

Fig. S9 Fluorescence spectra of sensor 1 (1×10^{-5} M) in the presence of different carbohydrates (from 0 to 13×10^{-5} M) in DMSO/PBS (pH 9, 0.1M) solution (1:99, v/v), at room temperature.

Fig. S10 Fluorescence spectra of sensor **15c** $(1 \times 10^{-5} \text{ M})$ in the presence of different carbohydrates (from 0 to 13×10^{-5} M) in DMSO/PBS (pH 9, 0.1M) solution (1:99, v/v), at room temperature.

Copies of NMR (¹H and ¹³C) and HRMS spectra

Fig. S11 ¹H NMR spectrum of 2

Fig. S12 ¹³C NMR spectrum of 2

Fig. S13 HRMS spectrum of compound 2

Fig. S14 ¹H NMR spectrum of 3

Fig. S15 ¹³C NMR spectrum of 3

Fig. S16 HRMS spectrum of compound 3

Fig. S17 ¹H NMR spectrum of 15a

Fig. S18 ¹³C NMR spectrum of 15a

Fig. S19 HRMS spectrum of compound 15a

Fig. S20 ¹H NMR spectrum of 15b

Fig. S21 ¹³C NMR spectrum of 15b

Fig. S22 HRMS spectrum of compound 15b

Fig. S23 ¹H NMR spectrum of 15c

Fig. S24 ¹³C NMR spectrum of 15c

Fig. S25 HRMS spectrum of compound 15c

Fig. S26 ¹H NMR spectrum of 15d

Fig. S27 ¹³C NMR spectrum of 15d

Fig. S28 HRMS spectrum of compound 15d

Fig. S29 ¹H NMR spectrum of 15e

Fig. S30 ¹³C NMR spectrum of 15e

Fig. S31 HRMS spectrum of compound 15e