Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting Information

S. Vedachalam et al

NHC catalyzed green synthesis of functionalized chromones: DFT mechanistic insights and *in vitro* activities in cancer cells

Nithya Murugesh,^a Jebiti Haribabu,^a Krishnamoorthy Arumugam,^a Chandrasekar Balachandran,^b Rajagopal Swaathy,^a Shin Aoki,^{b, c} Anandaram Sreekanth,^{*} Ramasamy Karvembu,^{a*}and Seenuvasan Vedachalam^{a*}

^aDepartment of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India.

^bFaculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-

8510 Japan

^cResearch Institute of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510 Japan

*Corresponding authors; e-mail addresses:seenuvasanv@gmail.com, kar@nitt.edu

Supporting Information

Table of Contents

I.	General scheme	S-2
II.	Preparation and crystal structure determination of compound 1d	S-2
III.	Figure 1 X-ray crystal structure of 1d	S-3
IV.	Table 1 Crystal data and structure refinement for 1d	S 3
V.	Table 2 Fractional atomic acordinates $(\times 10^4)$ and equivalent isotropic disp	lacement
	parameters	S4
VI.	Table 3 Anisotropic displacement parameters ($\times 10^4$) 1d	S 4
VII.	Table 4 Bond lengths in Å for 1d	S5
VIII.	Table 5 Bond angles in ° for 1d	S5
IX.	Table 6 Hydrogen fractional atomic coordinates $(\times 10^4)$ and equivalent	isotropic
	displacement parameters	S 6
X.	Table 6 Hydrogen bond information for 1d .	S6
XI.	Computational studies - Reaction energy profile and its coordinates	S 6
XII.	Mechanistic studies for three component reaction	S30
XIII.	NMR spectra of the compounds	S31

I. General scheme

II. X-ray structure and data of 1d

Preparation and crystal structure determination of compound **1d**. Compound **1d** (20 mg) was charged into a glass vial and dissolved in dichloromethane (2 mL) + 1 drop of DMF. Next, the solvent was evaporated slowly through needle holes at room temperature for 7 days. The pale-yellow crystal was obtained by standing.

The X-ray diffraction data were collected on a Bruker Kappa diffractometer at 100(2) K equipped with a CCD detector, employing MoK α radiation (λ =0.71073 Å), with the SMART suite of programs.¹ All data were processed and corrected for Lorentz and polarization effects with SAINT and absorption effects with SADABS.² Structural solution and refinement were carried out with the SHELXTL suite of programs.³ The structures were refined (weighted least squares refinement on F²) to convergence. All the non-hydrogen atoms in the compound were refined anisotropically by full-matrix least-squares refinement. The crystal structure data was placed in the data center of Cambridge, the CCDC number is 1821571.

A. Bruker, Inc. Smart Apex (Version 5.628), Saint+ (Version 6.45) and Shelxtl-nt (Version 6.12), Bruker AXS Inc., Madison, Wisconsin, USA (2001).

2. G. Sheldrick, SADABS, Program for area detector adsorption correction, Institute for Inorganic Chemistry, University of Göttingen, Germany 33 (1996).

3. G. Sheldrick, SHELXTL, Version 5.1, Bruker AXS Inc., Madison, WI, USA, (1999)

III. Figure 1 X-ray crystal structure of **1d.** Ellipsoids are drawn at the 50% probability level

IV. Table 1 Crystal data and structure refinement details for 1d

Compound	1d
Formula	C ₂₀ H ₁₅ NO ₅
$D_{calc.}$ / g cm ⁻³	1.478
μ/mm^{-1}	0.107
Formula Weight	349.33
Colour	clear yellow
Shape	block
Size/mm ³	0.26×0.18×0.14
T/K	100(2)
Crystal System	monoclinic
Space Group	$P2_{1}/c$
a/Å	16.2895(4)
b/Å	6.6468(2)
c/Å	14.8855(4)
$\alpha/^{\circ}$	90
$\dot{\beta}/^{\circ}$	103.0490(10)
$\gamma / ^{\circ}$	90
V/Å ³	1570.08(7)
Ζ	4
Ζ'	1
Wavelength/Å	0.71073
Radiation type	MoKα
$\Theta_{min}/^{\circ}$	2.809
$\Theta_{max}/^{\circ}$	26.372
Measured Refl.	19471
Independent Refl.	3190
Reflections Used	2820
R _{int}	0.0337
Parameters	236
Restraints	0
Largest Peak	0.273
Deepest Hole	-0.205
GooF	1.046
wR2 (all data)	0.0924
wR_2	0.0883
<i>R</i> 1 (all data)	0.0414
R_1	0.0357

V. Table 2 Fractional atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²×10³) for 1d. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij}

Atom	Х	У	Z	U_{eq}
01	6730.4(6)	-1584.1(13)	4079.4(6)	20.5(2)
02	7516.3(6)	198.0(13)	1937.8(7)	21.6(2)
03	5903.7(5)	3549.1(13)	5096.9(6)	18.7(2)
04	8245.9(5)	5719.8(13)	1188.5(6)	18.0(2)
05	9028.4(5)	5431.5(13)	2692.0(6)	20.0(2)
N1	7000.0(6)	2008.2(15)	3308.9(7)	16.5(2)
C1	6526.0(7)	-45.4(18)	4434.6(9)	15.7(3)
C2	6191.4(7)	-16.3(18)	5269.1(9)	16.0(3)
C3	5877.5(7)	1770.7(18)	5553.3(9)	16.4(3)
C4	6277.5(7)	3586.6(18)	4373.2(9)	16.8(3)
C5	6598.3(7)	1947.3(18)	4042.4(8)	15.5(3)
C6	6183.3(8)	-1748.2(19)	5811.6(9)	18.8(3)
C7	5848.6(8)	-1673(2)	6578.5(9)	21.8(3)
C8	5501.1(8)	117(2)	6819.8(9)	21.8(3)
C009	7350.7(7)	3644.8(18)	3017.5(9)	16.3(3)
С9	5517.1(8)	1845(2)	6315.0(9)	20.0(3)
C10	7819.0(7)	1855.3(18)	1784.0(9)	16.7(3)
C11	7753.4(7)	3635.8(18)	2311.6(9)	16.1(3)
C12	8205.8(8)	5511.6(18)	2137.1(9)	17.0(3)
C13	8464.7(7)	4025.9(18)	771.5(8)	16.4(3)
C14	8262.5(7)	2098.1(18)	1027.7(9)	16.5(3)
C15	8471.4(8)	438.8(19)	545.2(9)	20.0(3)
C16	8882.3(8)	702(2)	-160.7(9)	23.0(3)
C17	9074.6(8)	2635(2)	-411.2(9)	23.7(3)
C18	8865.0(8)	4296(2)	48.9(9)	21.5(3)
C19	9482.2(9)	7277(2)	2697.0(11)	29.1(3)

VI. Table 3 Anisotropic displacement parameters (×10⁴) 1d. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$

Atom	U 11	U 22	U 33	U 23	U 13	U ₁₂
01	25.9(5)	13.4(4)	24.1(5)	-2.0(4)	9.4(4)	-0.2(3)
02	25.4(5)	13.7(4)	27.9(5)	1.0(4)	10.7(4)	-2.3(3)
03	21.4(4)	14.3(4)	21.4(5)	0.0(3)	7.0(4)	1.0(3)
04	21.7(4)	14.4(4)	18.6(5)	2.0(3)	5.7(4)	-1.0(3)
05	16.3(4)	19.4(5)	22.8(5)	1.8(4)	1.5(3)	-3.1(3)
N1	17.6(5)	13.6(5)	18.9(5)	-0.6(4)	5.2(4)	-1.1(4)
C1	13.0(5)	14.5(6)	18.5(6)	-1.3(5)	1.0(5)	-1.4(4)
C2	13.1(5)	16.2(6)	17.7(6)	-1.2(5)	1.4(5)	-3.1(4)
C3	13.9(5)	15.3(6)	18.5(6)	-0.3(5)	0.5(5)	-2.1(4)
C4	17.4(6)	14.4(6)	18.5(6)	1.4(5)	4.1(5)	-1.6(5)
C5	13.0(5)	15.8(6)	16.5(6)	0.4(5)	0.9(4)	-2.6(4)
C6	18.6(6)	15.6(6)	20.9(7)	-0.4(5)	2.1(5)	-3.9(5)
C7	21.2(6)	23.9(7)	19.4(7)	3.8(5)	2.8(5)	-6.2(5)
C8	17.5(6)	31.1(7)	17.6(7)	-1.7(5)	5.4(5)	-5.5(5)
C009	14.4(5)	13.2(6)	20.0(6)	1.1(5)	1.3(5)	-0.3(4)
С9	15.8(6)	22.4(6)	21.4(7)	-4.4(5)	3.6(5)	-0.3(5)
C10	13.7(5)	15.2(6)	20.1(6)	3.1(5)	1.6(5)	0.4(4)
C11	14.9(5)	14.0(6)	18.5(6)	1.6(5)	2.0(5)	0.7(4)
C12	17.7(6)	16.2(6)	17.5(6)	0.1(5)	4.5(5)	-0.4(5)
C13	14.4(5)	17.0(6)	16.2(6)	0.1(5)	-0.2(5)	0.0(5)
C14	13.9(5)	17.4(6)	16.7(6)	1.5(5)	0.4(4)	0.2(4)

Supporting Information

S. Vedachalam et al

Atom	U 11	U 22	U 33	U 23	U 13	U 12
C15	20.8(6)	17.5(6)	20.8(7)	0.9(5)	2.6(5)	1.8(5)
C16	24.1(6)	24.4(7)	20.3(7)	-2.1(5)	4.7(5)	3.5(5)
C17	22.5(6)	31.6(7)	17.6(7)	0.9(6)	6.1(5)	-0.8(5)
C18	21.1(6)	22.5(6)	20.0(7)	4.1(5)	3.1(5)	-4.2(5)
C19	24.1(7)	26.9(7)	33.3(8)	2.2(6)	0.3(6)	-10.8(6)

VII. Table 4 Bond lengths in Å for 1d

Atom	15	Length/Å	Aton	15	Length/Å	-	Aton	15	Length/Å
01	C1	1.2311(15)	C1	C2	1.4650(18)	-	C10	C11	1.4376(17)
02	C10	1.2489(15)	C1	C5	1.4629(16)		C10	C14	1.4775(18)
03	C3	1.3689(15)	C2	С3	1.3960(17)		C11	C12	1.5006(16)
03	C4	1.3520(16)	C2	C6	1.4080(17)		C13	C14	1.3973(17)
04	C12	1.4349(15)	C3	С9	1.3906(18)		C13	C18	1.3896(18)
04	C13	1.3710(15)	C4	C5	1.3487(17)		C14	C15	1.3994(18)
05	C12	1.4073(14)	C6	C7	1.3727(19)		C15	C16	1.3786(19)
05	C19	1.4312(16)	C7	C8	1.3990(19)		C16	C17	1.393(2)
N1	C5	1.3945(16)	C8	С9	1.3760(19)		C17	C18	1.382(2)
N1	C009	1.3453(16)	C009	C11	1.3585(18)				

VIII. Table 5 Bond angles in \degree for 1d

Atoms			Angle/°	Aton	ns		Angle/°
C4	03	C3	118.78(10)	C15	C14	C10	121.49(11)
C13	04	C12	116.14(9)	C16	C15	C14	120.48(12)
C12	05	C19	113.13(10)	C15	C16	C17	119.89(12)
C009) N1	C5	125.76(11)	C18	C17	C16	120.56(13)
01	C1	C2	124.30(11)	C17	C18	C13	119.46(12)
01	C1	C5	121.79(12)				
C5	C1	C2	113.91(10)				
С3	C2	C1	120.00(11)				
С3	C2	C6	118.06(12)				
C6	C2	C1	121.94(11)				
03	C3	C2	121.99(11)				
03	C3	С9	116.13(11)				
С9	C3	C2	121.89(12)				
C5	C4	03	123.87(11)				
N1	C5	C1	115.66(11)				
C4	C5	N1	123.46(11)				
C4	C5	C1	120.86(12)				
С7	C6	C2	120.29(12)				
C6	C7	C8	120.27(12)				
C9	C8	C7	120.74(12)				
N1	C009	C11	124.06(11)				
C8	С9	С3	118.64(12)				
02	C10	C11	123.01(12)				
02	C10	C14	121.14(11)				
C11	C10	C14	115.84(11)				
C009	C11	C10	122.32(11)				
C009	C11	C12	118.16(11)				
C10	C11	C12	119.30(11)				
04	C12	C11	112.57(10)				
05	C12	04	109.41(10)				
05	C12	C11	107.86(10)				
04	C13	C14	121.88(11)				
04	C13	C18	117.36(11)				
C18	C13	C14	120.69(12)				
C13	C14	C10	119.61(11)				
C13	C14	C15	118.89(12)				

D-H-A/deg

IX. Table 6 Hydrogen fractional atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å²×10³) for 1d. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ii}

Atom	x	У	Z	i	Ueq	
H1	7026.5	876.08	3010.29	20		
H4	6316.56	4841.79	4080.51	20		
H6	6410.48	-2973.94	5646.07	23		
H7	5853	-2842.14	6946.98	26		
H8	5251.24	139.58	7338.01	26		
H009	7314.6	4883.81	3324.44	20		
H9	5286.55	3063.39	6483.49	24		
H12	7908.47	6706.34	2320.97	20		
H15	8328.92	-878.75	705.29	24		
H16	9034.13	-432.84	-475.73	28		
H17	9352.19	2812.62	-902.49	28		
H18	8993.5	5611.99	-127.42	26		
H19A	9607.03	7489.48	2090.09	44		
H19B	10010.55	7208.37	3167.05	44		
H19C	9139.84	8395.66	2837.24	44		
X.	Table 7 H	Hydrogen bor	nd informatio	on for 1d		
D	Н	Α	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-
N1	H1	02	0.88	1.99	2,6638(14)	132

XI. **Computational studies**

All calculations were carried out using the Gaussian09 quantum chemical program.⁴⁻⁸ Geometry optimization of reactants, intermediates and transition states was performed using the B3LYP functional in conjunction with the basis set 6-31G**. Frequency calculations have been done to confirm that the optimized structures are minima on the potential energy surface. For the stable structures, no imaginary frequency was observed. For the transition states, one imaginary frequency on the reaction path was observed. Further intrinsic reaction energy profiles have been calculated to confirm that the tracked Transition states are the correct ones. The optimized structures of intermediates (INT-1 to 3) and transition states are shown below, which gives the information of formation of Breslow intermediate, key intermediate for the formation of C-C bond formation. The optimized structures showed that the intermediate structures are stabilized by H-bonding between catalyst and reactant which further supports the mechanism for the formation of 3-aminochromone.

(Note: Charge, multiplicity, total energy (hartree), number of imaginary frequencies, and Cartesian coordinates of the compounds studied at the B3LYP/ 6-31g(d) level of theory).

Reactant	kcal/mol
TS1	16.95
INT1	13.71
TS2	35.08
INT2	-8.96
TS3	14.11
INT3	7.58
Products	-18.62

Reaction	
Coordinate	kcal/mol
0.28932	4.511303848
0.57915	4.436837295
0.86907	4.321463399
1.15901	4.174676376
1.44889	4.003937317
1.7388	3.816155099
2.02873	3.617454215
2.31868	3.413118297
2.60862	3.207558735

2.89856	3.004314683
3.18862	2.806134633
3.47853	2.614869737
3.76842	2.432044844
4.0583	2.258337665
4.34815	2.094112153
4.63809	1.939468712
4.92803	1.794237913
5.21808	1.658218954
5.50793	1.531060429
5.79771	1.412461134
6.0874	1.30223909
6.3768	1.199396558
6.66544	1.104128066
6.95453	1.015705702
7.24186	0.933847088
-0.28979	4.507658017
-0.57958	4.412803681
-0.86952	4.245421797
-1.15947	4.00287055
-1.44943	3.685714699
-1.73938	3.301233353
-2.02932	2.864474191
-2.31924	2.398680164
-2.60913	1.933576398
-2.89895	1.501605133
-3.18865	1.131431004
-3.47801	0.841841645
-3.76663	0.635152566
-4.05354	0.496052535
-4.32452	0.402810898
-4.59293	0.332059202
-4.87253	0.271686513
-5.15523	0.219741277
-5.44125	0.173882882
-5.7299	0.133339494
-6.01537	0.098550367
-6.30239	0.067896528
-6.59161	0.041139523
-6.87184	0.019013538
-7.1574	0

Intrinsic reaction coordinate (IRC) profile for TS1: a) *Carbene* + *Nitrile* \rightarrow *Adduct (TS for this reaction).* b) *On the left Carbene and Nitrile are present.* c) *On the right Adduct is present.* d) *On top of the hill the TS is present.*

Carbene + Nitrile --> INT1

INT1 to INT2 through TS2 IRC profile

Reaction

Coordinate	kcal/mol
0.10751	44.78956
0.21499	43.62196
0.32247	41.67943
0.42995	39.04253
0.53743	35.85651
0.64491	32.31059
0.75238	28.59602
0.85985	24.87023
0.96733	21.24595
1.07482	17.80211
1.18231	14.59634
1.2898	11.6733
1.39728	9.068824
1.50475	6.809777
1.61221	4.913644
1.71966	3.38938
1.82706	2.236482
1.93432	1.44095
2.04088	0.962694
2.1458	0.700985
2.2521	0.518731
2.35353	0.368662
2.45601	0.233283
2.56284	0.11053
2.66886	0
-0.10751	44.81387
-0.21499	43.80102
-0.32247	42.23535
-0.42996	40.22561
-0.53745	37.87645
-0.64494	35.28476
-0.75242	32.53836
-0.85991	29.71677
-0.9674	26.89274
-1.07488	24.13287
-1.18236	21.49681
-1.28984	19.03629
-1.39731	16.79424
-1.50477	14.80415

-1.61221	13.08889
-1.71962	11.65921
-1.82696	10.51125
-1.9342	9.623661
-2.04131	8.956405
-2.14835	8.457491
-2.25544	8.078921
-2.36255	7.787813
-2.46964	7.561452
-2.57593	7.383722
-2.68025	7.236408

Intrinsic reaction coordinate (IRC) profile for TS2. a) On the left INT1 is present

b) On the right INT2 –Breslow intermediate is present c) On top of the hill –TS is present

INT 2 Breslow intermediate

INT3 Imine intermediate

Cartesian coordinates of the optimized reactants, products, intermediates, and transition states calculated at the B3LYP/6-3G(d) level of theory.

The following reaction energy profile represents imine to amine transformation.

Charge = 0 Multiplicity = 1

E(B3LYP) = -552.323688 (hartree)

Number of imaginary frequencies=0

6	0.406276000	-1.737124000	-0.000106000
6	0.108382000	-0.370895000	-0.000169000
6	1.148989000	0.583586000	0.000006000
6	2.476407000	0.137493000	0.000065000
6	2.781166000	-1.219754000	0.000014000
6	1.740915000	-2.150346000	0.000027000
1	-0.378893000	-2.484498000	-0.000219000
1	3.254606000	0.894605000	0.000096000
1	3.814566000	-1.552195000	0.000077000
1	1.961013000	-3.214413000	0.000141000
6	0.877985000	2.042805000	0.000104000
8	-1.167425000	0.132445000	-0.000001000
6	-2.246604000	-0.787083000	0.000097000
1	-2.221208000	-1.431169000	-0.889928000
1	-2.221416000	-1.430850000	0.890364000
8	1.759865000	2.883536000	-0.000111000
6	-3.497809000	-0.019624000	-0.000004000
7	-4.505147000	0.553899000	-0.000043000
1	-0.186409000	2.339033000	0.000470000

Carbene

Charge = 0 Multiplicity = 1

E(B3LYP) = -1032.515190 (hartree)

Number of imaginary frequencies=0

16	-1.964560000	1.746766000	-0.825512000
6	-0.324006000	2.182091000	-0.476126000
6	-2.028071000	0.398378000	0.310721000
6	-0.817852000	0.298105000	0.921419000
7	0.077335000	1.296722000	0.464048000
6	1.473108000	1.368853000	0.939311000
1	1.492490000	1.237647000	2.025558000
1	1.790421000	2.390400000	0.718565000
6	2.398225000	0.368452000	0.268189000
6	3.259633000	-0.428751000	1.029780000
6	2.431421000	0.263647000	-1.128885000
6	4.142007000	-1.317041000	0.410018000
6	3.308367000	-0.625430000	-1.747971000
6	4.166088000	-1.418743000	-0.980733000
1	3.244921000	-0.352464000	2.115290000
1	1.766756000	0.886514000	-1.721770000
1	4.804771000	-1.930283000	1.014874000
1	3.324979000	-0.697940000	-2.832233000
1	4.848672000	-2.111509000	-1.465615000
6	-0.398917000	-0.686696000	1.972064000
1	-0.147843000	-0.189642000	2.918140000
1	-1.207178000	-1.392670000	2.176998000
1	0.478923000	-1.262744000	1.658949000
6	-3.246748000	-0.461985000	0.474483000
1	-3.209087000	-1.006194000	1.424915000
1	-4.143941000	0.171970000	0.516789000
6	-3.420710000	-1.490294000	-0.660642000
1	-2.557355000	-2.162341000	-0.683850000
1	-3.459406000	-0.974258000	-1.632398000
8	-4.555519000	-2.320825000	-0.462728000
1	-5.346629000	-1.768696000	-0.562309000

INT1

Charge = 0 Multiplicity = 1

E(B3LYP) = -1584.843300 (hartree)

Number of imaginary frequencies=0

16	0.739725000	1.581133000	-0.665626000
6	0.353310000	-0.068463000	-0.370492000
6	-0.617097000	2.138365000	0.292446000
6	-1.300503000	1.071730000	0.791308000

7	-0.748663000	-0.156215000	0.376253000
6	-1.398296000	-1.462792000	0.695851000
1	-1.570465000	-1.482990000	1.773611000
1	-0.622678000	-2.206764000	0.431353000
6	-2.678313000	-1.679222000	-0.077523000
6	-3.815668000	-2.165397000	0.581344000
6	-2.741158000	-1.475232000	-1.463471000
6	-4.986991000	-2.443761000	-0.125114000
6	-3.913985000	-1.742877000	-2.168596000
6	-5.041366000	-2.229064000	-1.502601000
1	-3.780123000	-2.334602000	1.655373000
1	-1.866941000	-1.110594000	-1.996974000
1	-5.857269000	-2.823218000	0.403766000
1	-3.944725000	-1.578841000	-3.242507000
1	-5.953335000	-2.440612000	-2.054053000
6	-2.457557000	1.088838000	1.741911000
1	-2.175665000	0.623352000	2.694042000
1	-2.760005000	2.117566000	1.947371000
1	-3.322354000	0.551772000	1.340671000
6	-0.890136000	3.605922000	0.455582000
1	-1.426230000	3.772466000	1.398162000
1	0.049736000	4.163902000	0.532323000
6	-1.709623000	4.203716000	-0.707910000
1	-2.676768000	3.683477000	-0.788499000
1	-1.178320000	4.049754000	-1.652482000
8	-1.870944000	5.605401000	-0.579105000
1	-2.462274000	5.773093000	0.171041000
6	1.219181000	-1.279865000	-0.903988000
1	0.888980000	-1.330440000	-1.978226000
8	1.059199000	-2.406942000	-0.218282000
6	2.689061000	-0.807922000	-0.957732000
6	3.413277000	-0.898699000	-2.150631000
6	3.382460000	-0.395751000	0.198481000
1	2.896266000	-1.228845000	-3.048844000
6	4.772876000	-0.584528000	-2.209107000
6	4.737369000	-0.072701000	0.148765000
1	5.307991000	-0.663968000	-3.151506000
1	5.224695000	0.262788000	1.059591000
6	5.436492000	-0.167179000	-1.056341000
1	6.493017000	0.084696000	-1.089384000
8	2.718572000	-0.192707000	1.402709000
6	2.386892000	-1.386552000	2.135712000
1	2.008554000	-2.148329000	1.427047000
1	3.257212000	-1.748492000	2.699442000
6	1.300012000	-1.041034000	3.059229000
7	0.397098000	-0.782998000	3.742802000

INT2

Charge = 0 Multiplicity = 1

E(B3LYP) = -1584.855900 (hartree)

Number of imaginary frequencies=0

-0.258632000 -2.448159000 -2.386333000 -1.178249000 -1.008550000 -1.759286000 -0.032945000 -1.146860000 -0.457676000 -1.975400000	$\begin{array}{r} -0.295452000\\ -1.496333000\\ -0.249156000\\ 0.432421000\\ 1.862820000\\ 2.149423000\\ 2.024753000\\ 2.752156000\\ 3.971649000\\ \end{array}$	-0.377262000 -0.896799000 -1.410313000 -1.148743000 -1.405585000 -2.145985000 -1.863221000 -0.176310000
-2.448159000 -2.386333000 -1.178249000 -1.008550000 -1.759286000 -0.032945000 -1.146860000 -0.457676000 -1.975400000	-1.496333000 -0.249156000 0.432421000 1.862820000 2.149423000 2.024753000 2.752156000 3.971649000	-0.896799000 -1.410313000 -1.148743000 -1.405585000 -2.145985000 -1.863221000 -0.176310000
-2.386333000 -1.178249000 -1.008550000 -1.759286000 -0.032945000 -1.146860000 -0.457676000 -1.975400000	-0.249156000 0.432421000 1.862820000 2.149423000 2.024753000 2.752156000 3.971649000	-1.410313000 -1.148743000 -1.405585000 -2.145985000 -1.863221000 -0.176310000
-1.178249000 -1.008550000 -1.759286000 -0.032945000 -1.146860000 -0.457676000 -1.975400000	$\begin{array}{c} 0.432421000\\ 1.862820000\\ 2.149423000\\ 2.024753000\\ 2.752156000\\ 3.971649000 \end{array}$	-1.148743000 -1.405585000 -2.145985000 -1.863221000 -0.176310000
-1.008550000 -1.759286000 -0.032945000 -1.146860000 -0.457676000 -1.975400000	$\begin{array}{c} 1.862820000\\ 2.149423000\\ 2.024753000\\ 2.752156000\\ 3.971649000 \end{array}$	-1.405585000 -2.145985000 -1.863221000 -0.176310000
-1.759286000 -0.032945000 -1.146860000 -0.457676000 -1.975400000	2.149423000 2.024753000 2.752156000 3.971649000	-2.145985000 -1.863221000 -0.176310000
-0.032945000 -1.146860000 -0.457676000 -1.975400000	2.024753000 2.752156000 3.971649000	-1.863221000 -0.176310000
-1.146860000 -0.457676000 -1.975400000	2.752156000 3.971649000	-0.176310000
-0.457676000	3.971649000	0 100110000
-1 975400000		-0.132118000
1.775+00000	2.408254000	0.898309000
-0.604323000	4.836533000	0.953534000
-2.118256000	3.269080000	1.988360000
-1.436322000	4.486568000	2.018839000
0.195221000	4.247150000	-0.958035000
-2.502165000	1.457895000	0.888297000
-0.064621000	5.779868000	0.969297000
-2.762459000	2.985472000	2.816583000
-1.548411000	5.155344000	2.867869000
-3.448223000	0.419724000	-2.232834000
-3.076356000	0.694544000	-3.228026000
-4.296138000	-0.253147000	-2.372702000
-3.828010000	1.332152000	-1.756071000
-3.548518000	-2.514467000	-0.952645000
-4.237631000	-2.267241000	-1.770816000
-3.141923000	-3.507303000	-1.184809000
-4.350960000	-2.625447000	0.358820000
-4.806445000	-1.650543000	0.596229000
-3.681667000	-2.880958000	1.185753000
-5.320562000	-3.662249000	0.314914000
-5.977683000	-3.424421000	-0.357603000
0.985828000	0.062130000	0.034302000
1.585791000	1.886361000	0.304481000
1.578795000	1.250029000	-0.432179000
1.834039000	-0.770947000	0.914634000
1.427621000	-1 117030000	2 215007000
	-1.975400000 -0.604323000 -2.118256000 -1.436322000 0.195221000 -2.502165000 -0.064621000 -2.762459000 -1.548411000 -3.448223000 -3.076356000 -4.296138000 -3.828010000 -3.548518000 -4.237631000 -3.141923000 -4.350960000 -4.350960000 -4.350960000 -5.320562000 -5.977683000 0.985828000 1.585791000 1.578795000 1.834039000 1.427621000	-0.457676000 3.971649000 -1.975400000 2.408254000 -0.604323000 4.836533000 -2.118256000 3.269080000 -1.436322000 4.486568000 0.195221000 4.247150000 -2.502165000 1.457895000 -0.064621000 5.779868000 -2.762459000 2.985472000 -1.548411000 5.155344000 -3.448223000 0.419724000 -3.076356000 0.694544000 -4.296138000 -0.253147000 -3.548518000 -2.514467000 -3.548518000 -2.267241000 -3.141923000 -3.507303000 -4.350960000 -2.625447000 -4.806445000 -1.650543000 -5.320562000 -3.662249000 -5.977683000 -3.424421000 0.985828000 0.062130000 1.578795000 1.250029000 1.834039000 -0.770947000

6	3.106291000	-1.214235000	0.494962000
1	0.452698000	-0.782299000	2.558994000
6	2.245507000	-1.861172000	3.064760000
6	3.933615000	-1.950870000	1.342824000
1	1.902518000	-2.109582000	4.065268000
1	4.894149000	-2.294354000	0.968599000
6	3.506066000	-2.274725000	2.630573000
1	4.150083000	-2.856493000	3.284198000
8	3.514694000	-0.993837000	-0.811964000
6	4.409156000	0.099569000	-0.981195000
1	3.882720000	1.046680000	-0.813240000
1	5.255853000	0.034349000	-0.282624000
6	4.931752000	0.075511000	-2.354122000
7	5.365534000	0.087707000	-3.429636000

INT3

Charge = 0 Multiplicity = 1

E(B3LYP) = -1584.853605 (hartree)

Number of Imaginary frequencies=0

16	-0.375749000	2.095571000	-0.098623000
6	-0.376245000	0.515568000	-0.799571000
6	1.352753000	2.267975000	-0.291692000
6	1.871268000	1.136649000	-0.841426000
7	0.882507000	0.169298000	-1.109349000
6	1.253398000	-1.172894000	-1.647156000
1	1.887628000	-1.005151000	-2.521495000
1	0.284520000	-1.593044000	-1.975247000
6	1.957868000	-2.043490000	-0.631462000
6	3.056976000	-2.816485000	-1.031601000
6	1.502663000	-2.155648000	0.689764000
6	3.684578000	-3.684543000	-0.137193000
6	2.136418000	-3.015921000	1.586724000
6	3.228572000	-3.783843000	1.177970000
1	3.419676000	-2.743114000	-2.054820000
1	0.640871000	-1.581934000	1.018165000
1	4.533123000	-4.277473000	-0.468165000
1	1.768340000	-3.090840000	2.606462000
1	3.718378000	-4.455250000	1.877866000
6	3.304074000	0.875503000	-1.194896000
1	3.429886000	0.723808000	-2.273692000

1	3.920342000	1.729339000	-0.906672000
1	3.690816000	-0.013051000	-0.687411000
6	2.055292000	3.508399000	0.181763000
1	2.997083000	3.626699000	-0.368625000
1	1.453702000	4.396975000	-0.040579000
6	2.351222000	3.498323000	1.697339000
1	2.980496000	2.630435000	1.948568000
1	1.415816000	3.394181000	2.255882000
8	2.928972000	4.716297000	2.132374000
1	3.832358000	4.764633000	1.783198000
6	-1.693143000	-0.344118000	-1.178850000
1	-2.448534000	0.048751000	-3.382658000
8	-1.434971000	-1.240890000	-2.100908000
6	-2.256080000	-0.859397000	0.164684000
6	-2.158570000	-2.204898000	0.518278000
6	-2.927497000	0.020773000	1.021696000
1	-1.687006000	-2.880048000	-0.189321000
6	-2.669682000	-2.651211000	1.738826000
6	-3.441469000	-0.408758000	2.244361000
1	-2.586282000	-3.699685000	2.012406000
1	-3.953975000	0.302967000	2.884675000
6	-3.297954000	-1.750402000	2.604353000
1	-3.697566000	-2.095479000	3.554448000
8	-3.057775000	1.351532000	0.664154000
6	-3.513549000	1.547935000	-0.688897000
1	-4.578311000	1.289540000	-0.750119000
1	-3.412253000	2.618597000	-0.884137000
6	-2.748199000	0.719513000	-1.704346000
7	-3.042949000	0.769320000	-2.933184000

TS1

Charge = 0 Multiplicity = 1

E(B3LYP) = -1584.835965 (hartree)

Number of Imaginary frequencies=1 (-168.99 cm⁻¹)

16	0.643437000	1.600289000	-0.826604000
6	0.248660000	-0.055785000	-0.597042000
6	-0.591308000	2.164020000	0.290336000
6	-1.259318000	1.090542000	0.794100000
7	-0.774648000	-0.124614000	0.261392000
6	-1.412985000	-1.428583000	0.575193000
1	-1.541867000	-1.488863000	1.658036000
1	-0.682680000	-2.190374000	0.278575000
6	-2.734479000	-1.624375000	-0.142515000
6	-3.842354000	-2.118112000	0.557381000
6	-2.860343000	-1.377081000	-1.516034000
6	-5.050189000	-2.363405000	-0.099058000
6	-4.068139000	-1.613574000	-2.171489000
6	-5.167238000	-2.108685000	-1.465557000
1	-3.756584000	-2.318770000	1.623143000
1	-2.007390000	-0.999265000	-2.074024000
1	-5.898764000	-2.748802000	0.459946000
1	-4.149775000	-1.415997000	-3.237098000
1	-6.107056000	-2.295009000	-1.978170000
6	-2.334611000	1.080383000	1.837542000
1	-1.991701000	0.560771000	2.740654000
1	-2.599431000	2.101801000	2.119363000
1	-3.241401000	0.581149000	1.480980000
6	-0.804153000	3.626941000	0.550944000
1	-1.317095000	3.754396000	1.512892000
1	0.157721000	4.144441000	0.642329000
6	-1.622225000	4.327504000	-0.553196000
1	-2.607596000	3.845197000	-0.648975000
1	-1.113323000	4.220626000	-1.516288000
8	-1.736340000	5.723397000	-0.330081000
1	-2.294122000	5.856541000	0.452004000
6	1.431705000	-1.644459000	-1.055447000
1	1.087300000	-1.693300000	-2.107076000
8	1.159893000	-2.596194000	-0.274682000
6	2.790556000	-0.968268000	-0.970490000
6	3.579927000	-0.924409000	-2.124922000
6	3.340989000	-0.455876000	0.221198000
1	3.165653000	-1.315692000	-3.051756000
6	4.875004000	-0.402666000	-2.109991000

6	1 620226000	0.072744000	0.242070000
0	4.030320000	0.073744000	0.242970000
1	5.464769000	-0.385901000	-3.022278000
1	5.005469000	0.483332000	1.176268000
6	5.402079000	0.097338000	-0.920444000
1	6.406249000	0.511590000	-0.894097000
8	2.583220000	-0.328226000	1.377037000
6	2.396610000	-1.521016000	2.147611000
1	2.137380000	-2.356251000	1.483066000
1	3.295156000	-1.751372000	2.736976000
6	1.263210000	-1.278784000	3.050968000
7	0.341729000	-1.096678000	3.732989000

TS2

Charge = 0 Multiplicity = 1

E(B3LYP) = -1584.779336 (hartree)

Number of Imaginary frequencies=1 (-1646.17 cm⁻¹)

16	0.808585000	1.643028000	-0.304940000
6	0.363569000	-0.040833000	-0.095744000
6	-0.684429000	2.183627000	0.469307000
6	-1.433231000	1.121102000	0.850138000
7	-0.853930000	-0.121587000	0.523781000
6	-1.539370000	-1.399698000	0.816640000
1	-1.806098000	-1.408526000	1.876481000
1	-0.788497000	-2.177120000	0.647390000
6	-2.754804000	-1.650707000	-0.056251000

6	-3.888302000	-2.264925000	0.490954000
6	-2.749881000	-1.344630000	-1.423627000
6	-4.990642000	-2.571749000	-0.308418000
6	-3.853459000	-1.644093000	-2.222848000
6	-4.977451000	-2.259850000	-1.668559000
1	-3.906347000	-2.507517000	1.551378000
1	-1.879285000	-0.867799000	-1.866790000
1	-5.861354000	-3.048288000	0.134243000
1	-3.833531000	-1.398579000	-3.281437000
1	-5.836255000	-2.493413000	-2.291897000
6	-2.721297000	1.158921000	1.615493000
1	-2.607282000	0.678252000	2.594828000
1	-3.026553000	2.192898000	1.786724000
1	-3.530210000	0.649015000	1.083271000
6	-0.960636000	3.652695000	0.602636000
1	-1.666966000	3.817398000	1.426335000
1	-0.044360000	4.191891000	0.871925000
6	-1.529257000	4.287908000	-0.682660000
1	-2.473136000	3.790152000	-0.955303000
1	-0.831324000	4.137897000	-1.512217000
8	-1.688368000	5.692684000	-0.562537000
1	-2.386608000	5.859108000	0.089669000
6	1.186597000	-1.076877000	-0.602756000
1	0.664066000	-1.856000000	-1.359408000
8	0.941361000	-2.485413000	-0.259297000
6	2.618274000	-0.747022000	-0.897063000
6	3.086154000	-0.698452000	-2.217742000
6	3.553085000	-0.514915000	0.136762000
1	2.376155000	-0.877731000	-3.021243000
6	4.417943000	-0.413132000	-2.517411000
6	4.886784000	-0.226217000	-0.155908000
1	4.746481000	-0.375949000	-3.552063000
1	5.567498000	-0.042341000	0.669481000
6	5.318755000	-0.170120000	-1.480486000
1	6.358960000	0.056770000	-1.697899000
8	3.196185000	-0.467906000	1.471943000
6	2.587963000	-1.632329000	2.041539000
1	2.169942000	-2.301763000	1.272460000
1	3.334886000	-2.179228000	2.632306000
6	1.487627000	-1.216599000	2.924286000
7	0.594658000	-0.912001000	3.600541000

-

Charge = 0 Multiplicity = 1

E(B3LYP) = -1584.836839 (hartree)

Number of Imaginary frequencies=1 (-1176.61 cm⁻¹)

16	-0.888458000	1.626541000	0.006304000
6	-0.345475000	0.008803000	-0.276895000
6	0.630848000	2.298490000	-0.549478000
6	1.483333000	1.301259000	-0.908978000
7	0.921888000	0.020166000	-0.752081000
6	1.679570000	-1.213447000	-1.113893000
1	2.064049000	-1.060203000	-2.126059000
1	0.955366000	-2.022294000	-1.149775000
6	2.813213000	-1.542453000	-0.159213000
6	4.117818000	-1.687133000	-0.647380000
6	2.564403000	-1.762986000	1.203055000
6	5.164740000	-2.034059000	0.209046000
6	3.613462000	-2.100079000	2.057994000
6	4.914554000	-2.234023000	1.566749000
1	4.317489000	-1.535186000	-1.706371000
1	1.543004000	-1.706147000	1.566372000
1	6.171147000	-2.146251000	-0.185384000
1	3.410829000	-2.272375000	3.111740000
1	5.727036000	-2.501086000	2.237305000
6	2.865710000	1.466634000	-1.463829000
1	2.953793000	1.030144000	-2.466003000
1	3.108667000	2.527697000	-1.545205000
1	3.617978000	0.989959000	-0.828995000

6	0.849420000	3.784109000	-0.531845000
1	1.621273000	4.050411000	-1.264866000
1	-0.062783000	4.307226000	-0.841337000
6	1.261654000	4.323429000	0.855008000
1	2.193509000	3.836545000	1.181940000
1	0.490967000	4.077150000	1.592004000
8	1.369528000	5.736288000	0.864788000
1	2.148831000	5.983214000	0.343166000
6	-1.196983000	-1.172038000	-0.013306000
1	-0.669434000	-2.980112000	-0.229947000
8	-0.492253000	-2.161761000	0.616825000
6	-2.539264000	-0.791198000	0.579723000
6	-2.853023000	-0.990697000	1.926115000
6	-3.524359000	-0.282297000	-0.284517000
1	-2.097788000	-1.433132000	2.568520000
6	-4.109539000	-0.635216000	2.417320000
6	-4.780457000	0.083519000	0.200481000
1	-4.345061000	-0.785336000	3.467300000
1	-5.516831000	0.481610000	-0.490966000
6	-5.064827000	-0.086629000	1.556135000
1	-6.043661000	0.193361000	1.936662000
8	-3.239104000	-0.080364000	-1.618640000
6	-2.633126000	-1.196336000	-2.307836000
1	-3.419113000	-1.871075000	-2.667460000
1	-2.133277000	-0.755719000	-3.177200000
6	-1.667730000	-1.968070000	-1.448839000
7	-1.263272000	-3.135003000	-1.465602000

TS4 (Imine to amine TS)

Charge = 0 Multiplicity = 1

E(B3LYP) = -552.243166 (hartree)

Number of Imaginary frequencies=1 (-2095.29 cm⁻¹)

S-23

6	1.653348000	-1.419236000	0.265512000
1	2.083501000	-1.772647000	1.206205000
6	1.972017000	-0.056250000	-0.050342000
6	1.005586000	1.046618000	0.140375000
6	-0.369255000	0.517479000	0.089972000
6	-0.635171000	-0.877155000	0.050859000
6	-1.452924000	1.417573000	0.003529000
1	-1.221213000	2.477908000	0.029511000
6	-2.751699000	0.962130000	-0.117987000
1	-3.577285000	1.664388000	-0.181373000
6	-2.997743000	-0.423757000	-0.166214000
1	-4.016688000	-0.788346000	-0.264728000
6	-1.957533000	-1.334130000	-0.086734000
7	3.175951000	-0.085850000	-0.585580000
1	3.780244000	0.737810000	-0.457980000
8	0.313640000	-1.837296000	0.179444000
8	1.321236000	2.226392000	0.266188000
1	-2.132081000	-2.404766000	-0.113222000
1	2.973097000	-1.425795000	-0.458230000

Amine

Charge = 0 Multiplicity = 1

E(B3LYP) = -552.363283 (hartree)

Number of Imaginary frequencies=0

6	1.517102000	-1.529976000	-0.006065000
1	2.136435000	-2.419065000	-0.012789000
6	1.990368000	-0.258214000	-0.017764000
6	1.042713000	0.870867000	-0.001370000

6	-0.373352000	0.490185000	-0.007197000
6	-0.739356000	-0.866167000	0.002158000
6	-1.392232000	1.462940000	-0.008035000
1	-1.091362000	2.505736000	-0.012285000
6	-2.723878000	1.086711000	-0.004974000
1	-3.505439000	1.840669000	-0.008345000
6	-3.067256000	-0.278999000	0.002009000
1	-4.113099000	-0.573424000	0.004283000
6	-2.085286000	-1.257271000	0.006609000
7	3.332732000	0.091927000	-0.090240000
1	3.983885000	-0.514006000	0.391857000
1	3.455973000	1.074665000	0.136381000
8	0.192403000	-1.857697000	0.012576000
8	1.447446000	2.037274000	0.028291000
1	-2.327240000	-2.315133000	0.013429000

Imine

Charge = 0 Multiplicity = 1

E(B3LYP) = -552.347522 (hartree)

Number of Imaginary frequencies=0

1			
6	1.586203000	-1.535829000	0.345959000
1	1.553872000	-1.643059000	1.441515000
6	2.079870000	-0.149994000	0.008614000
6	1.038743000	0.957137000	0.006236000
6	-0.359391000	0.510756000	0.045962000
6	-0.667447000	-0.862690000	-0.067747000
6	-1.408438000	1.447810000	0.113736000
1	-1.141598000	2.497193000	0.191595000
6	-2.729702000	1.036112000	0.069736000
1	-3.534840000	1.762073000	0.126202000
6	-3.020506000	-0.332894000	-0.057667000
1	-4.055044000	-0.663213000	-0.098224000
6	-2.004783000	-1.277605000	-0.127204000

7	3.317394000	0.067278000	-0.186884000
1	3.441687000	1.082417000	-0.318979000
8	0.279493000	-1.831991000	-0.168310000
8	1.393599000	2.127972000	-0.054275000
1	-2.216866000	-2.337509000	-0.221819000
1	2.258999000	-2.293512000	-0.057181000

Et₃N base mediated proton transfer of TS2 Optimized structure and coordinates

TS2 in gas and solvent phase

TS2 containing Et₃N base

Charge = 0 Multiplicity = 1

E(B3LYP) = -1877.222289 (hartree)

Number of Imaginary frequencies=1 (-1319.61 cm⁻¹)

-0.55009400	2.22130900	-0.97200400
-0.16133600	0.52868600	-0.61173300
1.17278700	2.57264900	-1.29503500
1.92715200	1.45583700	-1.17546900
1.19595500	0.30949100	-0.78506600
1.67130700	-1.06354900	-1.07007400
1.82169500	-1.17315800	-2.15060400
0.82470300	-1.70446800	-0.77849600
2.90405900	-1.51143200	-0.31506200
3.67541900	-2.54959300	-0.85663800
3.26284400	-0.99820700	0.93723100
4.77340000	-3.06062500	-0.16510400
	$\begin{array}{c} -0.33039400\\ -0.16133600\\ 1.17278700\\ 1.92715200\\ 1.19595500\\ 1.67130700\\ 1.82169500\\ 0.82470300\\ 2.90405900\\ 3.67541900\\ 3.26284400\\ 4.77340000\end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

С	4.36788700	-1.50197900	1.62751700
С	5.12736800	-2.53674400	1.08025600
Η	3.40140400	-2.96768000	-1.82291100
Η	2.68064900	-0.18779800	1.36575700
Η	5.35632200	-3.86675800	-0.60308700
Η	4.63585000	-1.08251900	2.59446800
Η	5.98668100	-2.92989000	1.61687400
С	3.39683000	1.35364200	-1.46179700
Η	3.61320700	0.53555600	-2.15720700
Η	3.75502900	2.27984100	-1.91659000
Η	3.98414900	1.16518900	-0.55749200
С	1.57688200	3.97863200	-1.62700100
Η	2.53627200	3.97083400	-2.16071600
Η	0.84708800	4.43246700	-2.30961000
С	1.70335500	4.89069200	-0.39109700
Η	2.45514200	4.47529800	0.29910200
Η	0.75042900	4.92291200	0.14613900
0	1.99443300	6.23690700	-0.73672600
Н	2.87420100	6.25400300	-1.14470900
С	-1.14013400	-0.40595600	-0.13782000
Н	-1.22031200	-0.00700000	1.25123500
0	-0.83335400	-1.68756400	0.11552400
С	-2.52216800	-0.15205600	-0.74336500
С	-3.50394100	0.65114800	-0.14682600
С	-2.86244500	-0.76844400	-1.96900500
Η	-3.26851700	1.17199200	0.77722500
С	-4.77151600	0.82260300	-0.71163600
С	-4.12675800	-0.61145800	-2.53492100
Η	-5.50288400	1.45638600	-0.21691100
Η	-4.33058300	-1.09334600	-3.48710100
С	-5.08908700	0.18157500	-1.90633800
Н	-6.07033400	0.30480600	-2.35655200
0	-1.91286600	-1.46544100	-2.69953900
С	-1.77564100	-2.84556400	-2.33678400
Н	-1.62606900	-2.91056200	-1.24899100
Н	-2.65481200	-3.42305600	-2.65770500
С	-0.58018000	-3.37123000	-3.00638300
Ν	0.37906400	-3.79651100	-3.50290300
С	-1.58707900	1.22238400	3.08475400
С	-1.19690500	1.56120600	4.52625700
Н	-2.66546300	1.35531200	2.95068800
Н	-1.09544500	1.93191400	2.40884300
Н	-1.52461100	2.58435300	4.74348800
Н	-1.66246100	0.89729800	5.25872800
Η	-0.11286900	1.52979600	4.67127800
С	-2.30908300	-1.18256600	2.76356300

С	-2.88758600	-1.36032400	4.16957900
Η	-1.87691100	-2.10460600	2.37156300
Η	-3.12096800	-0.92259900	2.07753700
Η	-3.62647000	-2.16923900	4.13512200
Η	-2.13607000	-1.62938800	4.91601800
Η	-3.41071700	-0.46254900	4.51563300
С	0.14788700	-0.59510400	2.80037000
С	0.46159500	-1.35004100	4.09277600
Н	0.77467900	0.29943500	2.72174900
Н	0.36214600	-1.23644400	1.94038000
Н	1.52964000	-1.59602400	4.08714800
Н	0.25275000	-0.77480400	4.99906800
Η	-0.08299900	-2.29711600	4.14756500
Ν	-1.25810900	-0.13664300	2.56936600

- Gaussian 09, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010
- 5. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, **98**, 5648–5652.
- 6. Becke, A. D. A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys., 1993, **98**, 1372–1377.
- 7. Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev. B*, 1988, **37**, 785–789.
- 8. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. *Phys. Rev. A*, 1988, **38**, 3098–3100.

XII. Mechanistic studies for the three-component reaction

Procedure for the mechanistic investigation. For the Path A; Acetal protect 3-formyl chromone was prepared and taken in RBF which is given in left figure. To this, ethanol and 3-amino-8-methoxychromone was added and heated to reflux, and the similar product was obtained when we have used the 3-formylchromone. We have compared the ¹H NMR spectra of the both the reaction products and found similar pattern of **8d**.

XIII. NMR spectra of the compounds

S-31

NMR spectra of functionalised 3-aminochromone derivatives

N-410, L3CAV4D0MHz, CDC13, 5cblrd morpho

Qualitative Analysis Report

Data File	PO-2C.d	Sample Name	POTHI
Sample Type	Sample	Position	
Instrument Name	Instrument 1	User Name	
Acq Method	Demo.m	Acquired Time	31-01-2019 11:47:17 (UTC+05:30)
IRM Calibration Status	Success	DA Method	HARI.m
Comment			
Sample Group		Info.	
Stream Name		Acquisition Time (Local)	31-01-2019 11:47:17 (UTC+05:30)
Acquisition SW Version	6200 series TOF/6500 series Q-TOF B.08.00 (B8058.0)	TOF Driver Version	8.00.00
TOF Firmware Version	17.698	Tune Mass Range Max.	3200

Spectra

Peak List					
m/z	z	Abund	Formula	Ion	
76.0773	1	1187374.75			
117.1024	1	730194.56			
121.0509		247251.64			
122.0574	1	346070.22			
134.1175	1	718820.19			
139.0728	1	315938.31			
262.1798	1	231126.33			
294.2059	1	240328.17			
310.201	1	488804.38			
323.0793	1	426235.47	C15 H15 CI N2 O4	(M+H)+	

Formula Calculator Element Limits

Element	Min	Мах
С	15	20
Н	15	20
N	2	2
Cl	1	1
0	4	4
Qualitative Analysis Report

Formula Calculato	r Resul	ts				
Formula	Best	Mass	Tgt Mass	Diff (ppm)	Ion Species	Score
C15 H15 CI N2 O4	True	322.0719	322.072	0.43	C15 H16 CI N2 O4	98.4

--- End Of Report ---

N-431, 13C AV400MHz, CDC135-fluxo morpho

47
90
4
E
4
的
- Hi
Z
0
0
- 5

Single Mass Analysis "dierance = 5.0 PPM / DBE; min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-F.T = 3

	11:39:20 14-59-2010 1. TOF MS ES+ 2.63e+001	101 A00
L	2	907.350
4	-	307 300
	alla	3 <u>07</u> 250
	(2)	307.200
		307.150
	uch mass) HAB332 307 1093	387.1CO
	results for ea	307.050
	to 50 closest	307.000 -1.5 100.0
8 = 1 :	F: 0-1	305 950
s used for i-F	2 O. D.4	306,500
otope peaks	Mass, Even E evaluated wit di 0-21 N: 0-	305 880
Number of is	Monaisotopic 27 formula(e) Elements Usa C, 0-15 H C15H1 5FN204 C-46B 28 (0.62	% 0 Mi nitouri: Na kimuri:

36 12 0:

j. 3 212

C13 H16

0.0

1990

 $\tilde{m}_{i}^{*} \tilde{m}_{j}^{*}$

1.0-

307.1093

Calc. Mans 307.1094

NASE

I-FIT (Norm) Formula

112-7 14.1

0 N-E-M

0 - 5 **TDa**

N439

99**'**7----

68**'**E—

7**+**'6-

 $<^{10.01}_{10.01}$

Elemental Composition Report

Single Mass Anetysis Tolerance = 5.0 PPM / DBE min = -1.5, max = 100.0 Element predictor: Off Muncher of lockage genits used for i+PIT = 3

Monsensteele Maas. Even Electron tens 15 tennedický exclusive with 1 rescurse within tenne (up to 50 closer: veculte for each mass) Electronia Gred C 0-20 M (0-21 M 0-2 G 0-5 crostiliszote escalar and an anti-148335 C 488 8 (5 110) Cor (6:10)

323.1246 100 16

0 238.860	200.0	104	398.	998	489.199		29.292	338.309	332.405	
Millionana Mala Takawa		8.4	10.00	*1.0 20010						
NAM	main, manal	in the	224	100	Gett	Line mare	Trends.			
329,3396	339-2345	111	7.2	23.5	2.54	R.S.	617 813	195 - 198		

and the second s ppm 10 20 30 4 - 09 918169~ 60 906'55-961.58----L21.127 20 185.77~ 480.77~ 80 8 100 091.401-110 120 ~ 110° 005 A DECK 153.441 154.582 130 n-494,1-3C, 400 MHz, cdcl3,9-methowy morphone ch 140 ha isi a bi akul 150 686'##T----1/8.021-160 98L 99T محمد وأقدرت فالأنا فالمائحة لعقامك والمكول فيتعدك والله فيتلك فالمريق مقتم ومريته والمع 170 VIL 891-999.111-180 all and the second s 190 200 210 ŝ IZ 220 0= MeO.

Elemental Con	nposition R	eport			-						Page 1
Single Mass A Tokrance = 5.0 F Element predictio Number of isotop	nalysis PM / DBE n: Off e peaks used	: min = -1.5 for i-FIT =), max = 100 3	ے ہ	2			J.	5		
Moncisatopic Mass 14 formula(e) evalu Elements Used: C: 0-18 H: 0-21 CtetHisvoos	k, Even Electrol lated with 1 res N: 0-2 C:	n Ions aufts within I 0-5	mits (up to 50) closest res	ults for each n	1988)	2 De	0	3		
C-42B 9 (0.220)					-					1, 10	10,06:12 +Sep-2010 F MS ES+
1001					6	19.1294					1.48e+003
*											
1											
318.860	313.900	318,950	319,000	319.060	319.100	319.150	319.200	119 250 319 300	319.350	319.400	2 1 1 1 1 1
Minimum: Maximum:		0.5	60	-1.5							
Mass Calc	Ti. Maga	nDa	PPR	DBE	1-FIT	1-FIT (Nor	n) Formula				
319.1294 319.	12.94	0.0	0.0	۵7 ۵7	24.6	0.0	C16 H19	N2 05			
								МеС			
							5c	J HN			
								~ N			
								$\langle \rangle$			

N-414, 13C AV400MHz, CCCL3, Smethokymorpholine

3	9	0		Þ	τ	Ţ	-
Cir Cir Cir	28	P		3 4	100		~
5	0	1.9	+	Þ	22	I	7
9	þ	8		5	þ	ī	~
30	9	6	•	9	早和	T T	~
f Z	TH G	4		81	91	Ţ	

	1: TOF MS E		319.400			
	The	7	319.350			
	51	VI P	319,300			<u>`_</u> >-°
			319.250		3	2日 夏
			315.200		al Formula	G15 H
	(988)	1206	319.150		-FIT (Nor	0.0
	ls for each ma	319	319.100		EIL I	m z
) closest resu	25	319.050	1-1- 0-0	17 I I I I I	84 47 10
max = 50.0	mits (up to 50		319,000	0.5	NC CL	ар. С
min = -'.5, 1 or I-FIT = 3	lens sults within lit D-5 S: D-5		318,953	0.9	mDa	2
5 Analysis 5.0 PPM / DBE: liction: Off otope peaks used	Mass, Even Electron i evaluated with 1 re: d: 0-19 N: 0-2 O: 2) Cm (3:8)		9.650 31.8 900		Calc. Mags	4451.915 4451
Single Mas Tolerance = { Element pred Number of is:	Monoisorop.c.) 155 formula(e) Elements User C. 0-15 H. (C16H18N2O5 SNV-2-3 3 (2.08	100 - %	0	NE N. I. TULTO	NA SE	319.1296

.....

140
Q.
0
<u>0</u>
œ
E.
0
龗
99
0
а,
E
0
0
-
奥
F
ā
ē
5
-
ш

Single Mass Analysis Tronsmess 5.0 PDM / DBF min = 2

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 C.C. 0 HAB333 344,1244 Monoisotopic Mass, Even Electron ions 20 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-18 H: 0-21 N: 0-3 O: 0-6 C-44B 12 (0 277) C17H17N3O5 001

11:17:12 14:Sep-2010 1: TOF MS ES+ 5:86e+002

m/z 344,400 344.300 344,200 344,100 344.000 343,900

8 12 C17 H18 i-FIT (Sorm) Formula 010 4114-7 10,000 -1.5100.0 10.5 DBE 9-9-0.2 No.4 -015 0.0 alla Calc. Mass 344.1246 Minimum 344.1246 Naximum Mass

343,800

ò

8

te
on Repo
positic
la Con
Element

Page 1

	11:50:15 14:Sep-2010 1: TOF MS E5+ 1.56e+003	
	$\langle \mathcal{G} \rangle$	319.250
		319,300 M
	-Fi	319.280
	(°)	318.200
	5333 5233 1292	319,150 -FIT (Morn
	s for each ma: HAE 319.	318.100 EIT
0	clasest result	319.050 11.5 00.0 .5 24
mex = 100.4	. 03 ol qu) alic	319.000 5.0 1 2FY 0 -0.6 8
min = -1.5, far i-F1T = 2	0-5 0-5	318.950 5+0 -0.2
5.0 PPM / DBE liction; Off stope peaks used	Mass, Even Electro evaluated with 1 re: 0-21 N: 0-2 O	0.850 3(0.900 Cal.c. Mass 319.1296
olerance = : Sement pred lumber of is:	Annulsotopic f 6 formula(a) - 6 formula(a) - 6 formula(a) - 7 C-16 H: (7 C-16	0 510 Extraum: Ess 19.1292

N-432, 13C AV400MHz, CDC135-fluro piperidine

1	1	ļ	
1	1	l	
ļ	i.	5	
	1		
	ł	5	
1	1		
	1		
	1	5	
1			
	1	6	
1	1	ç	
1	l		

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Number of isotope peaks used to rI-FIT = 3 Element: prediction: Off

Monoisoropic Mass, Even Electron Ions 51 formulate) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C. 0-18 H. 0-21 M. 0-3 D: 0-5 F: 0-1

C16H17FN2D3

C-45B 17 (0.394)

in o

305.1302

HAB3333

11:28-16 14-Sep-2010 1: TOF MS E3+ 1.52e+003

AND I 305.400 305.350 305,300 Į., 8 305.250 ZN CI6 H1F 1-FUT (Norm) Formula 305.200 305.150 0.0 305.100 1-214 24.6 306.050 -1.5 100.0 DHH. 305.000 0.5 No. 17 10 304 850 0. пDa 0.1 304.900 Calo. Mass 305.1301 304 850 305, 1302 Minimut I'mu xeli Mass ò %

12c

- 0 10 20 30 S714,85 5+85 68-4 STSZ'6E 9816'68-9580'0+-9752 0+-50 9614'0+ 60 20 80 6 100 68+9'101-110 f1 (ppm) +Z+I ZOI — 592+ STT 🔨 +588.811 ___ 120 6659 221 7155 8265 1902 921 130 65+0 981 ~ 8269 141 -140 -142,8020 __ 71/1 ++1 ----~ 142 2238 ~ 146 1225 __ 150 -126'6552 160 T 170 0= S609'ZZI — 180 1026,181-190 200 210 220

	1: TOF MS ES-	2.03e+00	Saul			A H
			364,400			2d
			364,300			
			364.200		d Formula	61 118 2 2
	ach mass)	364.1181	364.100		L-FIT (Morn	D * 0
	e sults for e				1-912	12.4
20.0	50 closest i		354 000	50.0	EBC	13° E
5. max = (of the factor			30.0	bied d	$\frac{1}{\frac{1}{2}}$
3E: min = -1 d for HF IT =	esults within I 3: 1-6		363, 300	0.5	HCH.	¥*.0-
ss Analysis 10.0 PPM / Df diction Off	Mass, Even Electri evaluated with 1 is di 0-24 N: 1-2 C 535)		13.800		Calc. Mass	364.1195
Single Mas Tolerance = Element prec Number of is	Monosolopic 14 formula(e) Elements Use C: 0-22 H C: 10-22 H C: 11: NOS EK-17-19/73 (1	8	8	Ni nimana Vakimana	Nats	141.1191

1: TOF MS ES+ 1 92e+001	and and a second
	00w822
	378,300
	ST8.200 Grm1 Formule C22 Hd0
sech mess) 378 (341	378 100 1 - E I 7 0 - 0
d results for	1-F.1
50.0 50 closes	378.000 201. 0 13. J
- 5, miax = - 3 limits (up t	10.0 2614
3E. min = -1 ad for I-FIT - on lans 0. 1-6 0. 1-6	217 900 5. 0 2. 0
10.0 PPM / DI Siction: Off Mass, Even Blect evaluated with 1 n 0.24 N: 1-2 (111) dm (2.7)	7.800 Cale. Mass 378.1341
Toterance = Element pre- Mumber of is Monolopic 11 formulare) Elements Use C 0-22 H c 0-22 H c 20+15M05 for for for	0 Binirum: Bass J7E.1341

	, ju i king di u i ka sa

mdd

2) 2 2	1: TOF MS ES+	2.00e+000	400 378.500				¢,	J [∦] J		
			378.300			19				
			378,200		Norm Formula	C22 H20 N				
	suits for each mass)	GET I BYE	378, 100		12.1-7 III -T	12.4 0.0				
x = 50.0	p to 50 closest re		378,000	-1.5	DHS	13.5				
JE min = -1.5, ma d for i-FIT = 3	on lons seu ts within lim ts (u) 1-6		377 900	510 20.0	nus. PPM	-0.5				
ss Analysis 10.0 P.PM / DE diction. Off sotope peaks use	Mass, Even Blectin evaluated with 1 m ed. D-24 N 1-2 C		7,800		Calc. Maps	37E.1341				
Single Ma. Tolerance = Element pro Number of ti	Microstatiopic 11 formulate; Elements Usa C: 0-22 H: C21H17N05 EK17-19 to (a	<u>8</u> <i>v</i>	4	Ni nimun: Na simuni	Fat also	319,1339				

8 8	9 8 7	8 9 0	91 4 7 9 7 8 0 7	
5 Z	0 9 7	ד כ ד	GL 8 0 0 Z L 6 8	2 0
0 Т	6 9 E	2 8	02 E Z 6 9 Z L T	9 Þ
8	8 8 T	9 0 7	917620278	2 9
	•	•	· · · · · · · · · · · · · · · · · · ·	ኮ
0 L	∠ ₽ 0	Э Б Г	00 E 9 T E 7 S S	•
8	₽ 9	а 8 8	0 1 1 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ΦS
T T	τ τ τ	T T T	H T T T T T T T T T	S
		> 		>

Page 1		: TOF MS E\$+	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22 m				\cap	Î,I	e for
		*-		380,400				- MA	•	5d
				380.302			12			
				380,200		/ Farmula	CZL HIH N O			
		es for each mass)	380 1132	380.100		Room Claum	0*0			
		pic matche				113-1	1000			
	50.0	50 best isok		380.000	-1.5	2046	13.5			
	.5, max = -3	limits (up) to			0.02	N.H.	29			
Report	8E: min = -1 d for i-FIT =	on lons esults within 0. 4-6		379.90	5.0	mtha.	10			+7
Composition F	ss Analysis 20.0 PPM / DE diction: Off otope peaks use	Mass, Even Electr evaluated with 1 n d El 10-20 N: 1-5		379,800		Calc. Mays	380,1134			
Elemental	Single Mas Tolerance = Element pre- Number of is	Monaisotopic 12 tormula(s) Elements Use C: 13-22 H C21H17N05 EK-95 (0.138)	-001	0	Makit mumit	MASS	380.1132			

-10

110 100 90 Chemical shift (ppm)

Page 1		1: TOF MS ES= 2.03e+000			394.500 muliz					Ĵ	
					394.400						
					284,300			06			
					384 200		semb Fortrula	C22 E20 8			
		s for each mass)	394 1286		294,100		S-FUT No	0.0			
		pic matche			1000		1.1.1	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)			
	20.0	50 best is olo			394,000	-1.5	THE	3°21			
	5, max = 3	mits (up to				30.15					
teport	KE: min = -1. d.for \FIT =	on ions suits within i O: 4-6			300 900	9.0	alls.	-0.5			**
Composition F	ss Analysis 20.0 PPM / DB fiction: Off otope peaks use	Mass, Even Electri evaluated with 1 re of 10-20 N: 1-5			303 600		Califia Nass	394 1291			
Elemental	Single Ma: Tolerance = Element pre Number of Is	Montaisotopic 10 formula(e) Elements Use C: 13-22 P C: 20419NOG EK-8 41 (0.923	00	x	0	Minimur: Maximur:	Mass	3942.1296			

6120.12 —	20 10 0 -10
0407.040	- 30
	50 40
22123 2873785	- 03
	- 02
	- 8
2168.211 289.911 289.811 2915	110 100 90 Chemical shift (ppm)
41780.224 41780.224 41780.224	120
LTE8 · EZT \$ E C S · EZT C S C S · EZT C S C S · EZT	130
1295·521 2295·321	- 140
EZES·LET 6ILS·EÞI ÞS6L·8ÞI	20
S6IS.421- 66IS.091-	60 1
	70 1
₽985°9∠T—	30 1.
∠₽ZI.68I—	90 18
	0 15
	0 20
8D	21(

	-
	- -
	- 0
	- 10
	- 20
	- 8
	- 4
6#5/.CC-	20 -
99 <i>LL</i> · 55	- 09
	- 2
	- 8
	06 (udd)
88TL·66 6790·00T	100 100 al shift (
L114.3420	110 Chemic
9829-811- 9829-811- 9829-811-	120
	130
6701.121 8196.221 8258.221	140
67L2. TEI	150
	- 160
9689°891	170
9810-221	- 180
7407.881—	- 190
	200
	210
p6	-

	10
	5
	0
Z2:J344	0
	0
	8 0 0
Z02L.66—	00 9 shift (pp
6986·#II	101 hemical
SC09 VII SC09 VII SC0	20 1 C
2662·021 2600·SZT- £495·SZT-	130
Δεςο·ΔΖΤ- Δεοτ·τετ- εςς6·ςετ-	140
8492.7213	150
8723.422 8926.721- 870.5078	160
8842.51	170
0111.971	180
₽∠8८·88T—	190
	200
	210
11	ł

Page 1	1: TOF MS ES+	4.03e+001	394.500 TIVE			MeO	
			304.400				
			394.300		N DE		
			384 200	ormi formula	C22 H20		
	(starth mass)	394 1279	394 100	ILTIN IN	0.0		
	est results for e		00 5	11 A-1	1.91		
hak = 50.0	(up to 50 close		3940	M DISE	13.		
Report BE min = -1.5, r	non lons souls w thin limits O: 1-6		381,900	edh F	E		
Composition ss Analysis 10.0 PFM / D diction Off	Mass, Even Bled With 1 re ed 0-24 N 1-2 1111 Sm (2-7)		009 085	Calc. Nass	194.1291		
Elemental Single Ma: Tolerance = Element pre Number of a	Manufactopic 9 formulatopic Elements Usix C 0-22 H1 C 0-	ğ. *	din inum	10 10 10 10 10	354,1279		

- -750	-700	-650	-600	-550	-500	-450	-400	-350	-300	- -250	-200	-150	-100	-50		50	
															and a state of the second s	-	-10
															and water and the second	-	- 0
															and a standard and the state of	-	- 01
1565'07 8200'17	>														and the second secon	.	- 20
															الماسية المالية المالية. المالية المالية	_	- 0£
															لىلىلەتىم أرامىلى ئەرماكىتەر بىرىيە	= 	- 4
C67/'CC	_														dana dalamata Manana dalamata		20 -
22'88'59	\succ																- 09
															al ta da pada da fata da seria da seria Anticipada da seria d		2
															and the second se	• 	- 8
															dinana daharan Meneratakan		- 06 (
S690'00T															alara Hatala Perinterna	- -	100 11 (ppm
114 3529 116 5402 115 2602 118 1902															allanala bitan Materia	-	110
118'3482 150'5361 152'0038	× -/ -/														llada da lla	<u>.</u>	120
152'2282 152'0 4 58 132'6205	// 														الليدية المحمد الم ومعادمة المحمد المحم		130
132 0320	7												_	-	and a state		140
124'255														-	Negleratuk. Negleratuk		150
160.508 0 163.542 0 0															and dependences	<u>-</u>	160
N 125.938 176.099 176.099				0-	Q										and the second secon	<u>-</u>	170
, 500 500				3	$\langle \rangle$										A hair a share a s		180
₩N ₩N ₩N ₩N	_			т 0=	<pre> </pre>	12d			-						and distribution of the second se		19(
13C{F					Q	2									And the second second		0 20(
12D					Ma												21

we did not receive any desire product. So Path-B may be highly desirable.

1

ł

19b, 1H NMR, 400 MHz, CDCI3

1f, 1H NMR, 300 MHz, CDCI3

4f, 1H NMR, 400 MHz, CDCI3

6f, 1H NMR, 400 MHz, CDCl3

8f, 1H NMR, 400 MHz, CDCI3

10f, 1H NMR, 400 MHz, CDCI3

13f, 1H NMR, 400 MHz, CDCI3

14f, 1H NMR, 400 MHz, CDCI3

ISI'# -

mdd ഹ 1 3 1 1 . τ ∞ <u>0.94</u> 0.94 <u>86.0</u>

