Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Li₃Ba₄Sc₃(BO₃)₄(B₂O₅)₂: featuring the coexistence of isolated BO₃ and B₂O₅ units

Xianghe Meng,^{a,b} Mingjun Xia, ^{a,b} and Rukang Li*,^{a,b}

^a Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China

^b University of Chinese Academy of Sciences, Beijing 100190, China

Experiment section

Reagents

All of the starting reagents, i.e., Li₂CO₃, BaCO₃, Sc₂O₃, LiF, NaF and B₂O₃, were of analytical grade and used without further purification.

Synthesis of Polycrystalline

Li₂CO₃, BaCO₃, Sc₂O₃, and B₂O₃ were fully mixed and grind with a molar ratio of Li₂CO₃: BaCO₃: Sc₂O₃: B₂O₃=1.5: 4:1.5:4. Then, the mixture was gradually heated to 723K at the rate of 50K/h from room temperature with several intermediate grindings and continued to heat up to 1053K in 24h and sintered at that temperature for 12h.

Crystal Growth

Colorless rod-like single crystals of LBSBO were successfully obtained from LiF-NaF-B₂O₃ flux with molar ratio of LBSBO: LiF: NaF: B₂O₃=1:3:2:2. After weighing the corresponding reactants according to the above proportion, the mixture was ground in a mortar and then transferred to a ϕ 10×20 platinum crucible. Afterward, the platinum crucible was heated in a crystal growth furnace at a rate of 50K/h from room temperature to 1223K and hold at this temperature for 24h. After that, the hightemperature melt was cooled to 923K at a cooling rate of 1K/h, followed by rapid cooling to room temperature at a rate of 25K/h.

Powder X-ray Diffraction (PXRD)

PXRD data of LBSBO was collected on Bruker D8 Focus diffractometer equipped with Cu K α radiation (λ =1.5418Å) in the 2 θ range of 5-70° at room temperature.

Single-Crystal Structure Determination

The diffraction data were collected on a Rigaku Oxford Diffraction single-crystal diffractometer equipped with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å) at 293 K. The crystal structures were solved by direct methods with the program SHELXS-97 and refined by full-matrix least squares on F² by SHELXL-97 programs.¹ The structures were verified using the ADDSYM algorithm from the program PLATON, and no higher symmetry was discovered. The relevant crystallographic data are presented in **Table S1**. Additional crystallographic information is provided in **Table S2-S4**.

Thermal analysis.

The different scanning calorimetry (DSC) analysis was performed on NETZSCH STA 409 CD thermal analyzer under N_2 flow with a sample heating rate of 20 °C/min from room temperature to 1000 °C.

UV-Vis-Near-IR (NIR) Diffuse-Reflectance Spectrum.

The reflectance spectra were measured in the range of 200-2000 nm by Cary 7000 UV-VIS-NIR Universal Measurement Spectrophotometer. BaSO4 was employed as the 100% reflectance standard.

Infrared spectra

Infrared spectroscopy of LBSBO were collected on a Varian Excalibur 3100 spectrometer in air from 400 cm⁻¹ to 1500 cm⁻¹ to clarify the coordination environment of the boron atoms.

Figure S1. The UV-vis NIR diffuse reflectance spectrum of LBSBO.

Formula	$Li_3Ba_4Sc_3B_8O_{22}$
Weight	1143.4735
Temperature/K	293(2)
Crystal system	triclinic
Space group	p]
a/Å	9.7959(3)
b/Å	10.2519(2)
c/Å	11.5878(3)
$\alpha/^{\circ}$	85.069(2)
β/°	68.734(2)
$\gamma/^{\circ}$	62.795(2)
Volume/Å ³	960.02(5)
Z	2
$\rho_{calc}g/cm^3$	3.956
µ/mm ⁻¹	9.178
F(000)	1024.0
Independent reflections	3921 $[R_{int} = 0.0404]$
Data/restraints/parameters	3921/0/361
Goodness-of-fit on F ²	1.066
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0196$, $wR_2 = 0.0490$
Final R indexes [all data]	$R_1 = 0.0229$, $wR_2 = 0.0509$

Table 1. Crystal data and structure refinement for LBSBO.

Atom	x	у	Z	U(eq)
Ba1	0.12594 (2)	0.80760 (2)	-0.14850 (2)	8.45(6)
Ba2	0.37961 (2)	0.69832 (2)	1.14932 (2)	8.47(6)
Ba3	0.32855 (3)	0.35721 (2)	0.55353 (2)	8.93(6)
Ba4	0.19285 (3)	1.12431 (2)	0.43844 (2)	9.55(6)
Sc1	0.23857 (7)	0.74789 (6)	0.50868 (5)	6.59(14)
Sc2	0.57523 (8)	0.70243 (7)	0.79199 (6)	5.34(13)
Sc3	-0.07211 (8)	0.78925 (7)	0.21299 (6)	5.63(13)
01	0.3537 (3)	0.4507 (3)	0.0847 (2)	12.9(5)
02	0.1586 (3)	1.0539 (3)	0.9051 (2)	15.9(6)
03	-0.0219 (3)	1.1239 (3)	0.3434 (2)	9.4(5)
O4	0.1492 (3)	0.8881 (3)	0.3883 (2)	13.6(6)
05	0.5115 (3)	0.8513 (3)	0.6578 (2)	11.0(5)
O6	0.0391 (3)	0.9084 (3)	0.2328 (2)	11.5(5)
07	0.3076 (3)	1.0871 (3)	0.6404 (2)	9.9(5)
O8	0.3509 (3)	0.8725 (3)	0.5364 (2)	13.7(5)
09	0.3707 (3)	0.8399 (3)	0.9412 (2)	10.4(5)
O10	0.5457 (3)	0.3772 (3)	0.6408 (2)	12.2(5)
011	0.7968 (3)	0.5804 (3)	0.6400 (2)	10.9(5)
012	0.4570 (3)	0.5905 (3)	0.7696 (2)	11.8(5)
013	0.1316 (3)	0.6650 (3)	0.0608 (2)	10.2(5)

Table 2 Fractional Atomic Coordinates and Equivalent Isotropic Displacement Parameters(Å²×10³) for LBSBO.

014	-0.0166 (3)	0.6490 (3)	0.3530 (2)	12.9(5)
O15	0.3279 (3)	0.6035 (3)	0.6288 (2)	15.1(6)
O16	0.1152 (3)	0.6255 (3)	0.4985 (2)	15.4(6)
O17	0.7234 (3)	0.7923 (3)	0.8095 (2)	11.5(5)
O18	0.2088 (3)	0.3138 (3)	-0.1955 (2)	12.8(5)
O19	0.5808 (3)	1.0559 (3)	0.8212 (2)	17.9(6)
O20	0.0418 (3)	0.5761 (3)	-0.1523 (2)	15.0(6)
O21	0.2489 (3)	1.0770 (3)	1.0568 (2)	12.4(5)
O22	0.2478 (3)	0.4322 (3)	-0.0591 (2)	11.5(5)
B1	0.0538 (4)	0.9727 (4)	0.3221 (3)	5.5(7)
B2	0.3876 (5)	0.9362 (4)	0.6134 (3)	7.2(8)
B3	0.2656 (5)	0.9840 (4)	0.9643 (4)	8.2(8)
B4	0.2392 (5)	0.5214 (4)	0.0320 (4)	7.5(8)
B5	0.4448 (5)	0.5251 (4)	0.6785 (3)	6.8(8)
B6	0.1570 (5)	0.4475 (4)	-0.1372 (3)	7.5(8)
B7	0.1012 (5)	0.5670 (4)	0.4030 (4)	7.6(8)
B8	0.6739 (5)	0.9325 (4)	0.8562 (3)	9.8(8)
Li1	-0.1855 (9)	0.7123 (8)	-0.0482 (7)	27.9(17)
Li2	0.4030 (9)	1.1079 (9)	0.7685 (7)	29.1(17)
Li3	-0.0604 (11)	0.6012 (9)	-0.2768 (8)	39(2)

atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Bal	0.00922 (11)	0.00696 (11)	0.00831 (11)	-0.00242 (9)	-0.00401 (8)	0.00086 (8)
Ba2	0.00947 (11)	0.00654 (11)	0.00788 (11)	-0.00213 (9)	-0.00359 (8)	0.00064 (8)
Ba3	0.01014 (11)	0.00846 (11)	0.01011 (11)	-0.00477 (9)	-0.00506 (8)	0.00100 (8)
Ba4	0.01111 (11)	0.01063 (11)	0.01016 (11)	-0.00642 (9)	-0.00557 (8)	0.00172 (8)
Sc1	0.0065 (3)	0.0041 (3)	0.0089 (3)	-0.0002 (3)	-0.0053 (3)	-0.0012 (2)
Sc2	0.0057 (3)	0.0045 (3)	0.0060 (3)	-0.0018 (3)	-0.0029 (2)	-0.0002 (2)
Sc3	0.0057 (3)	0.0046 (3)	0.0068 (3)	-0.0016 (3)	-0.0032 (2)	-0.0005 (2)
01	0.0162 (13)	0.0102 (12)	0.0137 (12)	-0.0043 (11)	-0.0094 (11)	0.0019 (10)
02	0.0206 (14)	0.0102 (13)	0.0184 (13)	-0.0030 (11)	-0.0139 (11)	0.0014 (10)
O3	0.0097 (12)	0.0077 (12)	0.0092 (11)	-0.0018 (10)	-0.0047 (10)	0.0005 (9)
O4	0.0176 (14)	0.0104 (12)	0.0130 (12)	-0.0027 (11)	-0.0107 (11)	0.0016 (10)
O5	0.0087 (12)	0.0115 (12)	0.0120 (12)	-0.0022 (10)	-0.0063 (10)	0.0021 (10)
O6	0.0122 (13)	0.0098 (12)	0.0153 (12)	-0.0048 (10)	-0.0076 (10)	-0.0021 (10)
07	0.0096 (12)	0.0062 (12)	0.0103 (11)	-0.0010 (10)	-0.0027 (10)	-0.0015 (9)
08	0.0131 (13)	0.0091 (12)	0.0216 (13)	-0.0045 (11)	-0.0096 (11)	-0.0002 (10)
09	0.0113 (12)	0.0065 (12)	0.0084 (11)	-0.0010 (10)	-0.0024 (10)	0.0007 (9)
O10	0.0130 (13)	0.0087 (12)	0.0114 (12)	0.0001 (10)	-0.0065 (10)	-0.0024 (9)
011	0.0085 (12)	0.0079 (12)	0.0103 (11)	0.0013 (10)	-0.0027 (10)	-0.0040 (9)
012	0.0129 (13)	0.0106 (12)	0.0165 (13)	-0.0057 (11)	-0.0097 (11)	0.0000 (10)
O13	0.0098 (12)	0.0072 (12)	0.0080 (11)	-0.0011 (10)	-0.0006 (10)	-0.0010 (9)

Table 3. Atomic displacement parameters of LBSBO (Å²).

O14	0.0131 (13)	0.0115 (13)	0.0135 (12)	-0.0041 (11)	-0.0070 (10)	0.0047 (10)
O15	0.0183 (14)	0.0095 (12)	0.0185 (13)	-0.0006 (11)	-0.0148 (11)	-0.0010 (10)
O16	0.0169 (14)	0.0062 (12)	0.0291 (15)	-0.0028 (11)	-0.0173 (12)	-0.0020 (11)
O17	0.0126 (13)	0.0130 (13)	0.0124 (12)	-0.0075 (11)	-0.0056 (10)	-0.0016 (10)
O18	0.0111 (13)	0.0126 (13)	0.0157 (12)	-0.0047 (11)	-0.0058 (10)	-0.0031 (10)
O19	0.0260 (15)	0.0129 (13)	0.0275 (15)	-0.0117 (12)	-0.0210 (13)	0.0080 (11)
O20	0.0185 (14)	0.0107 (13)	0.0227 (14)	-0.0075 (11)	-0.0143 (11)	0.0043 (10)
O21	0.0140 (13)	0.0102 (12)	0.0153 (12)	-0.0029 (11)	-0.0108 (11)	-0.0014 (10)
022	0.0107 (13)	0.0095 (12)	0.0132 (12)	-0.0006 (10)	-0.0074 (10)	-0.0046 (10)
B1	0.0031 (17)	0.0073 (18)	0.0065 (17)	-0.0042 (15)	-0.0001 (14)	0.0023 (14)
B2	0.0063 (18)	0.0047 (17)	0.0090 (18)	-0.0025 (15)	-0.0007 (15)	-0.0012 (14)
В3	0.0090 (19)	0.0081 (18)	0.0078 (17)	-0.0047 (16)	-0.0023 (15)	0.0013 (14)
B4	0.0089 (19)	0.0059 (18)	0.0082 (18)	-0.0057 (16)	-0.0007 (15)	0.0012 (14)
В5	0.0079 (19)	0.0053 (18)	0.0058 (17)	-0.0039 (15)	0.0000 (14)	0.0000 (14)
В6	0.0088 (19)	0.0094 (18)	0.0078 (17)	-0.0074 (16)	-0.0029 (15)	0.0038 (14)
В7	0.0066 (18)	0.0069 (18)	0.0090 (18)	-0.0046 (15)	-0.0010 (14)	0.0031 (14)
B8	0.0112 (19)	0.015 (2)	0.0067 (17)	-0.0087 (17)	-0.0026 (15)	-0.0003 (15)
Li1	0.029 (4)	0.018 (4)	0.046 (4)	-0.013 (3)	-0.024 (4)	0.015 (3)
Li2	0.022 (4)	0.033 (4)	0.032 (4)	-0.009 (3)	-0.016 (3)	0.005 (3)
Li3	0.032 (5)	0.026 (4)	0.055 (5)	0.006 (4)	-0.034 (4)	-0.009 (4)

Table 4. Bond lengths and bond angles of LBSBO.

Ba1—O3 ⁱ	2.716 (2)	Li1—O17 ^{XV}	2.085 (8)	
Ba1—O13	2.727 (2)	Li1—O20	1.965 (8)	
Ba1—O12 ⁱⁱ	2.811 (2)	Li2-O2	2.618	
Ba1—O2 ⁱⁱ	2.831 (3)	Li2—O18 ^{xvi}	2.038 (8)	
Ba1—O20	2.854 (3)	Li2—O7	2.089 (8)	
Ba1—O15 ⁱⁱ	2.897 (3)	Li2—O19	1.886 (8)	
Ba1—O6 ⁱ	2.897 (2)	Li2—O5	2.595 (9)	
Ba1—O2 ⁱⁱⁱ	3.018 (3)	Li3—O11 ^{XV}	2.054 (9)	
Ba1—O21 ⁱⁱⁱ	3.070 (3)	Li3—O17 ^{XV}	2.081 (8)	
Ba1—O9 ⁱⁱ	3.088 (3)	Li3—O14 ^{xii}	2.463 (9)	
Ba2—O9	2.714 (2)	Li3—O20	1.975 (8)	
Ba2—O10 ^{iv}	2.738 (2)	B1—O3	1.377 (4)	
Ba2—O19 ^V	2.785 (3)	B1—O4	1.371 (4)	
Ba2—O1 ^{vi}	2.850 (3)	B1—O6	1.356 (5)	
Ba2—O6 ^{vi}	2.855 (2)	B2—O5	1.380 (4)	
Ba2—O1 ^{vii}	2.904 (3)	B2—O8	1.378 (5)	
Ba2—O12 ^{iv}	2.914 (2)	B3—O2	1.354 (5)	
Ba2—O4 ^{vi}	2.988 (2)	B3—O9	1.338 (5)	
Ba2—O22 ^{vii}	3.035 (2)	B3—O21	1.412 (5)	
Ba2—O13 ^{vi}	3.114 (3)	B4—O1	1.354 (5)	
Ba3—O15	2.737 (3)	B4—O13	1.341 (5)	
Ba3—O10	2.754 (3)	B4—O22	1.410 (5)	
Ba3—O16	2.784 (2)	B5—O10	1.377 (4)	
Ba3—O8 ^{vii}	2.789 (3)	B5—O12	1.365 (5)	
Ba3—O18 ^{vi}	2.795 (2)	B5—O15	1.359 (5)	
Ba3—O11 ^{vii}	2.824 (2)	B6—O18	1.366 (5)	
Ba3—O5 ^{vii}	2.841 (2)	B6—O20	1.336 (5)	
Ba3—O14 ^{viii}	2.878 (3)	B6—O22	1.438 (5)	
Ba3—O7 ^{ix}	2.935 (2)	B7—O11 ^{vii}	1.385 (5)	
Ba4—O3	2.707 (3)	B7—O14	1.375 (5)	
Ba4—O8	2.733 (2)	B7—O14	1.375 (5)	
Ba4—O4	2.784 (3)	B7—O16	1.378 (5)	
Ba4—O16 ⁱⁱⁱ	2.804 (3)	B8—O17	1.377 (5)	
Ba4—O5 ^x	2.823 (3)	B8—O19	1.312 (5)	
Ba4—O17 ^X	2.858 (2)	B8—O21 ^v	1.438 (5)	
Ba4—O7	2.872 (2)	O6—B1—O4	120.3 (3)	
Ba4—O14 ⁱⁱⁱ	2.914 (3)	O6—B1—O3	120.1 (3)	
Ba4—O11 ^X	3.121 (2)	O4—B1—O3	119.6 (3)	
Ba4—O19 ^x	3.123 (3)	O8—B2—O7	120.0 (3)	
Sc1—O4	2.041 (2)	O8—B2—O5	120.6 (3)	
Sc1-015	2.059 (2)	O7—B2—O5	119.3 (3)	
Sc1—O10 ^{vii}	2.088 (2)	O9—B3—O2	123.3 (3)	

Sc1—O3 ⁱⁱⁱ	2.090 (2)	O9—B3—O21	123.6 (3)
Sc1—O8	2.135 (3)	O2—B3—O21	113.1 (3)
Sc1-016	2.137 (3)	O13—B4—O1	122.7 (3)
Sc2—O12	2.052 (3)	O13—B4—O22	123.2 (3)
Sc2—O9	2.078 (2)	O1—B4—O22	114.0 (3)
Sc2—O1 ^{vii}	2.080 (2)	O15—B5—O12	120.3 (3)
Sc2—O17	2.114 (3)	O15—B5—O10	119.5 (3)
Sc2—O11	2.122 (2)	O12—B5—O10	120.1 (3)
Sc2—O5	2.136 (2)	O20—B6—O18	125.6 (3)
Sc3—O6	2.044 (3)	O20—B6—O22	123.9 (3)
Sc3—O13	2.055 (2)	O18—B6—O22	110.5 (3)
Sc3—O2 ⁱⁱⁱ	2.096 (2)	O14—B7—O16	121.9 (3)
Sc3—O18 ^{xii}	2.116 (3)	O14—B7—O11 ^{vii}	118.8 (3)
Sc3—O14	2.126 (2)	O16—B7—O11 ^{vii}	119.3 (3)
Sc3—O7 ⁱⁱⁱ	2.161 (2)	O19—B8—O17	126.1 (3)
Li1—O21 ⁱⁱⁱ	1.960 (7)	O19—B8—O21 ^v	124.7 (3)
Li1—O22 ^{xii}	2.018 (7)	O17—B8—O21 ^v	109.1 (3)

Symmetry codes: (i) -*x*, -*y*+2, -*z*; (ii) *x*, *y*, *z*-1; (iii) -*x*, -*y*+2, -*z*+1; (iv) -*x*+1, -*y*+1, -*z*+2; (v) -*x*+1, -*y*+2, -*z*+2;

(vi) x, y, z+1; (vii) -x+1, -y+1, -z+1; (viii) -x, -y+1, -z+1; (ix) x, y-1, z; (x) -x+1, -y+2, -z+1; (xi) x+1, y, z+1;

(xii) -*x*, -*y*+1, -*z*; (xiii) *x*, *y*+1, *z*; (xiv) *x*, *y*-1, *z*-1; (xv) *x*-1, *y*, *z*-1; (xvi) *x*, *y*+1, *z*+1.

Table S5. The BVS of LBSBO.

Atom	BVS	Atom	BVS
Ba1	2.116	03	2.1571
Ba2	2.1181	O4	2.0915
Ba3	2.2361	05	1.959
Ba4	2.2289	O6	2.0527
Lil	0.9499	07	1.9913
Li2	0.7799	O8	2.0162
Li3	0.7731	09	2.0746
Sc1	3.1501	O10	2.1029
Sc2	3.101	011	2.001
Sc3	3.0876	012	2.0342
B1	3.025	013	2.0813
B2	2.9365	O14	1.9318
B3	3.0349	015	2.1029
B4	3.031	016	2.0108
B5	3.0329	017	2.0796
B6	2.9475	O18	1.979
B7	2.9342	019	1.8702
B8	2.991	O20	1.8392
01	2.0031	O21	2.1233
02	1.9872	022	2.1019

References

(1) Sheldrick, G. SHELXS-97, Program for crystal structure solution; *University of Göttingen, Germany*, **1997**.