Transition metal chalcogenides based MnSe hetero structured with NiCo₂O₄ as a new high performance electrode material for capacitive energy storage.

Vivekanandan Raman,^a Deviprasath Chinnadurai,^a Rajendiran Rajmohan,^a Venkata Thulasivarma Chebrolu,^a R Vinodh,^a Hee-Je Kim^{*a}

^a School of Electrical Engineering, Pusan National University, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea. E-mail: heeje@pusan.ac.kr; Fax: +82 51 513 0212; Tel: +82 51 510 2364.

Electrochemical calculations:

Specific capacity (*C*) or specific capacitance (*C_s*) were calculated from the GCD curves following the equations $C = I \times \Delta t/m$ (for the MnSe, NiCo₂O₄ and MnSe(20)/NiCo₂O₄ electrodes) and $C_s = I \times \Delta t/(m \times \Delta V)$ (for the MnSe, NiCo₂O₄ and MnSe(20)/NiCo₂O₄ electrodes), where *I* is the discharge current (A), Δt is the discharge time (S), *m* is the mass of the electroactive material in the electrode (g), and ΔV is the total potential deviation (V). The specific energy and power were calculated for asymmetric device using following equations:

$$E = I \int_{t=0}^{t=t} V(t) dt$$

$$P = \frac{E}{t}$$

Where, E is the specific energy (W h kg⁻¹), P is the specific power (W kg⁻¹), I is the specific current (A g⁻¹), V is the potential (V) and t is discharge time (S).¹

Fig S1. CV curves of MnSe(10)/NiCo₂O₄

Fig S2. Charge-discharge curve of MnSe(10)/NiCo₂O₄.

Fig S3. EIS spectra of MnSe(10)/NiCo₂O₄

Fig S4. CV curve of MnSe(30)/NiCo₂O₄.

Fig S5. EIS spectra of MnSe(30)/NiCo₂O₄

Fig S6. Charge-discharge curve of MnSe(30)/NiCo₂O₄

Fig S7. TEM EDS mapping of MnSe(20)/NiCo₂O₄

Fig S8. XPS spectra of O.

References

J. Ding, H. Wang, Z. Li, K. Cui, D. Karpuzov, X. Tan, A. Kohandehghan and D. Mitlin, *Energy Environ. Sci.*, 2015, 8, 941–955.