Transition metal chalcogenides based MnSe hetero structured with $\mathrm{NiCo}_{2} \mathrm{O}_{4}$ as a new high performance electrode material for capacitive energy storage.

Vivekanandan Raman, ${ }^{a}$ Deviprasath Chinnadurai, ${ }^{a}$ Rajendiran Rajmohan, ${ }^{a}$ Venkata Thulasivarma Chebrolu, ${ }^{a}$ R Vinodh, ${ }^{a}$ Hee-Je Kim ${ }^{*}{ }^{a}$
${ }^{\text {a }}$ School of Electrical Engineering, Pusan National University, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea. E-mail: heeje@pusan.ac.kr; Fax: +8251513 0212; Tel: +82515102364.

Electrochemical calculations:

Specific capacity (C) or specific capacitance $\left(C_{s}\right)$ were calculated from the GCD curves following the equations $C=I \times \Delta t / m$ (for the $\mathrm{MnSe}, \quad \mathrm{NiCo}_{2} \mathrm{O}_{4} \quad$ and $\mathrm{MnSe}(20) / \mathrm{NiCo}_{2} \mathrm{O}_{4} \quad$ electrodes) and $C_{s}=I \times \Delta t /(m \times \Delta V)$ (for the $\mathrm{MnSe}, \mathrm{NiCo}_{2} \mathrm{O}_{4}$ and $\mathrm{MnSe}(20) / \mathrm{NiCo}_{2} \mathrm{O}_{4}$ electrodes), where I is the discharge current (A), Δt is the discharge time (S), m is the mass of the electroactive material in the electrode (g), and ΔV is the total potential deviation (V). The specific energy and power were calculated for asymmetric device using following equations:

$$
\begin{gathered}
E=I \int_{t=0}^{t=t} V(t) d t \\
P=\frac{E}{t}
\end{gathered}
$$

Where, E is the specific energy ($\mathrm{Wh} \mathrm{kg}^{-1}$), P is the specific power ($\mathrm{W} \mathrm{kg}^{-1}$), I is the specific current (A g^{-1}), V is the potential (V) and t is discharge time (S). ${ }^{1}$

Fig S1. CV curves of $\mathrm{MnSe}(10) / \mathrm{NiCo}_{2} \mathrm{O}_{4}$

Fig S2. Charge-discharge curve of $\mathrm{MnSe}(10) / \mathrm{NiCo}_{2} \mathrm{O}_{4}$.

Fig S3. EIS spectra of $\mathrm{MnSe}(10) / \mathrm{NiCo}_{2} \mathrm{O}_{4}$

Fig S4. CV curve of $\mathrm{MnSe}(30) / \mathrm{NiCo}_{2} \mathrm{O}_{4}$.

Fig S5. EIS spectra of $\mathrm{MnSe}(30) / \mathrm{NiCo}_{2} \mathrm{O}_{4}$

Fig S6. Charge-discharge curve of $\mathrm{MnSe}(30) / \mathrm{NiCo}_{2} \mathrm{O}_{4}$

Fig S7. TEM EDS mapping of $\mathrm{MnSe}(20) / \mathrm{NiCo}_{2} \mathrm{O}_{4}$

Fig S8. XPS spectra of O.

References

J. Ding, H. Wang, Z. Li, K. Cui, D. Karpuzov, X. Tan, A. Kohandehghan and D. Mitlin, Energy Environ. Sci., 2015, 8, 941-955.

