Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Metal-oxygen cluster as peroxidase mimetics for their multifarious applications in colorimetric sensor

Mei-Jie Wei^{a,b},[‡] Jia-Qi Fu^a,[‡] Bo Li^a,[‡] Kui-Zhan Shao^a, Hong-Ying Zang^a,^{*} Xiao-Hong Wang^a,^{*}

Zhong-Min Sua*

^a Key Lab of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast

Normal University, Changchun, 130024, Jilin, China.

^b College of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng

224051, Jiangsu, China.

^c School of Chemistry and Environmental Engineering, Changchun University of Science and

Technology, Changchun, 130022, Jilin, China.

Fig. S1 XRD patterns of Fe₂₈ powder samples.

Fig. S2 (a) Temperature response curves for H_2O_2 detection; (b) Temperature– ΔA curve for H_2O_2 detection where $\Delta A = A$ (Fe₂₈, 652 nm)–A (blank, 652 nm).

Fig. S3 Fe_{28} facilitate the oxidation of TMB at ultrapure water with different reaction time.

Fig. S4 (a) different amount of the catalyst facilitate the oxidation of DA at ultrapure water; (b) A pH dependent response curve for DA detection using Fe_{28} kept at 25 °C. The error bars represent the standard deviation of three measurements; (c) UV-vis absorption spectrum of the reaction solution of DA after 1 min; (d) UV-vis absorption spectrum of the reaction solution of DA with Fe_{28} after 1 min.

Catalyst	Linear range (µM)	References
Fe ₂₈	26.2–157	This work
FeVO ₄	2–40	[1]
Fe ₃ O ₄ MNPs	5-100	[2]
$Fe_3H_9(PO_4)_6$ ·6H ₂ O	57.4–525.8	[3]
CoFe-LDHs	1–20	[4]
$g-C_3N_4-Fe_3O_4$	1–40	[5]
FA-Fe ₂ SiW ₁₀	0.134–67	[6]

Table S1 The linear range for H_2O_2 detection between Fe_{28} and other catalysts.

Table S2 Comparison of the kinetic parameters of Fe_{28} , Fe_3O_4 MNPs (magnetic nanoparticles) and HRP.

Catalyst	Substance	$K_{\rm m}$ (mM)	$V_{\max} \left(\mathbf{M} \cdot \mathbf{S}^{-1} \right)$
Fe ₂₈	TMB	0.0613	1.77× 10 ⁻³
Fe ₂₈	H_2O_2	0.0544	2.24× 10 ⁻³
Fe ₃ O ₄ MNPs	TMB	0.434	10.00× 10 ⁻⁸
Fe ₃ O ₄ MNPs	H_2O_2	154	9.78× 10 ⁻⁸
HRP	TMB	0.275	1.24× 10 ⁻⁸
HRP	H_2O_2	0.214	2.46× 10 ⁻⁸

Table S3 Comparison of catalyst activity in the linear range for glucose detection between Fe_{28} and other catalysts.

Catalyst	Linear range (µM)	References
Fe ₂₈	3.92-31.4	This work
H ₂ TCPP-CeO ₂	50-100	[7]
Fe ₃ O ₄ MNPs	50-100	[2]
NiCo ₂ O ₄	100–4500	[8]

Reference

- [1] Y. Z. Yu, P. Ju, D. Zhang, X. X. Han, X. F. Yin, L. Zheng and C. J. Sun, Peroxidase-like activity of FeVO₄ nanobelts and its analytical application for optical detection of hydrogen peroxide, *Sens. Actuators B Chem.*, 2016, 233, 162-172.
- [2] H. Wei and E. K. Wang, Fe₃O₄ magnetic nanoparticles as peroxidase mimetics and their applications in H₂O₂ and glucose detection, *Anal. Chem.*, 2008, 80, 2250-2254.
- [3] T. B. Zhang, Y. C. Lu and G. S. Luo, Synthesis of hierarchical iron hydrogen phosphate crystal as a robust peroxidase mimic for stable H₂O₂ detection, ACS Appl. Mater. Interfaces., 2014, 6, 14433-14438.
- [4] Y. W. Zhang, J. Q. Tian, S. Liu, L. Wang, X. Y. Qin, W. B. Lu, G. H. Cang, Y. L. Luo, A. M. Asiri, A. O. Al-Youbi and X. P. Sun, Novel application of CoFe layered double hydroxide nanoplates for colorimetric detection of H₂O₂ and glucose, *Analyst.*, 2012, **137**, 1325-1328.
- [5] J. Chen, Q. Chen, J. Y. Chen and H. D. Qiu, Magnetic carbon nitride nanocomposites as enhanced peroxidase mimetics for use in colorimetric bioassays, and their application to the determination of H₂O₂ and glucose, *Microchim Acta.*, 2016, **183**, 3191-3199.
- [6] L. Q. Yang, X. Y. Liu, Q. J. Lu, N. Huang, M. L. Liu, Y. Y. Zhang and S. Z. Yao, Catalytic and peroxidase-like activity of carbon based-AuPd bimetallic nanocomposite produced using carbon dots as the reductant, *Anal. Chim. Acta.*, 2016, 930, 23-30.
- [7] Q. Y. Liu, Y. Y. Ding, Y. T. Yang, L. Y. Zhang, L. F. Sun, P. P. Chen and C. Gao, Enhanced peroxidase-like activity of porphyrin functionalized ceria nanorods for sensitive and selective colorimetric detection of glucose, *Mater. Sci. Eng. C.*, 2016, **59**, 445-453.
- [8] W. Huang, T. Y. Lin, Y. Cao, X. Y. Lai, J. Peng and J. C. Tu, Hierarchical NiCo₂O₄ hollow sphere as a peroxidase mimetic for colorimetric detection of H₂O₂ and glucose, *Sensors.*, 2017, 17, 217.