Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supplemental Information

Cu/Cu₂O/rGO Nanocomposites: Solid-state Self-reduction Synthesis and Catalytic Activity for *p*-Nitrophenol Reduction

Yuehong Xie^{a,b}, Baolin Liu^a, Yizhao Li^{a,b,*}, Zixi Chen^a, Yali Cao^{a,*}, Dianzeng Jia^a

^a Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, China

^b College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, Xinjiang 830046,

China

*Corresponding author. Tel.: +86 991 8583083; fax: +86 991 8580032. E-mail address: liyizhao0809@126.com (Y. Li), caoyali@xju.edu.cn (Y. Cao)

Figure S1 The XRD pattern of the sample C-0 and C-300.

Figure S2 SEM images of the samples: (a) C-0 Cu₂O; (b) C-25 Cu₂O/CuO/rGO; (c) C-300 Cu₂O/rGO; (d, e) C-400 Cu/Cu₂O/rGO with different magnification; (f, g) C-500 Cu/Cu₂O/rGO with different magnification.

Figure S3 UV-vis spectra of the pure 4-AP solution (0.1 mM).

Figure S4 (a) UV-vis spectra of the 4-NP reduction reaction on Cu_2O (C-0) catalysts at different time. (b) Conversion rate of 4-NP over Cu_2O (C-0) as a function of time (min, left); the relationship between $ln(C/C_0)$ and reaction time (min) for Cu_2O (C-0, right).

_							
Catalysts	4-NP,	Catalyst	Time	k _{app}	Ma	E _a .	Refs.
	(10 ⁻³ mmol)	usage (mg)		(10^{-3} s^{-1})	(10 ⁻³ mol g ⁻¹ h ⁻¹)	(kJ mol ⁻¹)	
Cu ₂ O/rGO	50	2	8 min	7.0	115	-	This work
Cu/Cu ₂ O/rGO	50	2	6 min	16.3	250	24.94	This work
Pd@hTiO ₂	0.184	0.025	16 min	4.5	6	-	11
CuO-MnO ₂	0.3	1	14 min	4.4	1	-	2 ²
CuFe ₂ O ₄	0.5	0.04	10 min	120	75	-	3 3
Cu ₂ O on h-BN	7.2	10	12 min	7.08	0.5	-	4 4
CuO/ZnO	62.5	5	180 s	-	0.25	-	5 ⁵
Cu-LDH/rGO	0.2	0.025	2 min	27.04	240	-	6 ⁶
NiO/CuO	0.3	0.05	4 min	0.025	36	-	7 7
Leaf-like CuO	0.3	0.03	2 min	35.5	120	33.56	8 8
1.0Au/MCN	0.01919.33	20	18 min	5.67	-	-	9 ⁹
Fe ₃ O ₄ @TA/Ag	3	2	60 s	43.6	-	-	10^{-10}
MgAl-LDH@Au	0.3	0.02	260 s	13	-	-	11 11
Cu-Pd/HSAG	0.3	1.5	20 s	300	1.8	-	12 12

Table S1 Summary of catalytic activities for the reduction of 4-NP with various

^a M is a specific rate per mass of catalyst basis.

References

catalysts.

- 1. X. Zhou, X. Zhu, J. Huang, X. Li, P. Fu, L. Jiao, H. Huo and R. Li, *RSC Advances*, 2014, 4, 33055.
- J. Pal, C. Mondal, A. K. Sasmal, M. Ganguly, Y. Negishi and T. Pal, ACS Applied Materials & Interfaces, 2014, 6, 9173-9184.
- J. Feng, L. Su, Y. Ma, C. Ren, Q. Guo and X. Chen, *Chemical Engineering Journal*, 2013, 221, 16-24.
- 4. C. Huang, W. Ye, Q. Liu and X. Qiu, ACS Appl Mater Interfaces, 2014, 6, 14469-14476.
- M. Bordbar, N. Negahdar and M. Nasrollahzadeh, Separation and Purification Technology, 2018, 191, 295-300.
- 6. L. Dou and H. Zhang, *Journal of Materials Chemistry A*, 2016, 4, 18990-19002.
- G. Wu, X. Liang, L. Zhang, Z. Tang, M. Al-Mamun, H. Zhao and X. Su, ACS Applied Materials & Interfaces, 2017, 9, 18207-18214.
- W. Che, Y. Ni, Y. Zhang and Y. Ma, *Journal of Physics and Chemistry of Solids*, 2015, 77, 1-7.
- 9. S. Chen, H. Fu, L. Zhang and Y. Wan, *Applied Catalysis B: Environmental*, 2019, 248, 22-30.
- H. Veisi, S. Moradi, A. Saljooqi and P. Safarimehr, *Materials science & engineering. C, Materials for biological applications*, 2019, 100, 445-452.
- 11. K. Iqbal, A. Iqbal, A. Kirillov, B. Wang, W. Liu and Y. Tang, *Journal of Materials Chemistry* A, 2017, 5, 6716-6724.
- 12. M. Morales, M. Rocha, C. Freire, E. Asedegbega-Nieto, E. Gallegos-Suarez, I. Rodríguez-

Ramos and A. Guerrero-Ruiz, Carbon, 2017, 111, 150-161.