Supplemental Material for

Iron-magnesium compounds under Earth's inner core conditions

Pengyue Gao^{&,a}, Chuanxun Su^{&,a}, Sen Shao^a, Sheng Wang^a, Peng Liu^a,

Siyu Liu^{*a*}, and Jian Lv^{*a*,*}

^aState Key Laboratory of Superhard Materials & Innovation Center for Computational Physics Methods and Software, College of Physics, Jilin University, Changchun 130012, China

[&] The two authors contributed equally to this work and should be considered co-first authors

*Author to whom correspondence should be addressed: lvjian@jlu.edu.cn

Structure	Lattice	Atom	Atomic positions		
	Parameters	Atom			
I4/mmm-	0.00		0.50	0.50	0.67
Fe ₂ Mg	a = 2.32	Fe	0.50	0.50	0.67
(360GPa)	<i>c</i> = 7.29	Mg	0.00	0.00	0.50
		Fa	0.00	0.00	0.00
<i>R-3m-</i> FeMg ₄	<i>a</i> = 3.38	re	0.00	0.00	0.00
(360GPa)	<i>c</i> = 10.47	Mg	0.00	0.00	0.20
		Mg	0.00	0.00	0.40
Em 2m EoMa	a – 1 79	Fe	0.00	0.50	0.50
<i>г m-3m-г</i> elvig ₃	a = 4.78	Mg	0.25	0.25	0.25
(360GPa)		Mg	0.00	0.50	0.00
P63/mmc-		Fe	0.33	0.67	0.75
FeMg ₂	a = 3.40	Mg	0.00	0.00	0.00
(360GPa)	<i>c</i> = 4.00	Mg	0.33	0.67	0.25
<i>Fd-3m-</i> FeMg	<i>a</i> = 4.73	Fe	0.00	0.50	0.00
(360GPa)		Mg	0.50	0.50	0.00
		Fe	0.00	0.00	0.35
<i>R</i> -3 <i>m</i> -Fe ₂ Mg ₃	<i>a</i> = 3.36	Fe	0.00	0.00	0.55
(360GPa)	<i>c</i> = 20.61	Mg	0.00	0.00	0.75
		Mg	0.00	0.00	0.15

Table S1. Structure information of the Fe-Mg compounds at selected pressures. Atomic positions are in fractional coordinates. Lattice parameters are in units of Å.

		Mg	0.00	0.00	0.05
<i>Pmmn</i> -FeMg ₃ (200GPa)	<i>a</i> =3.71	Fe	0.00	0.00	0.35
	<i>b</i> = 4.44	Mg	0.00	0.50	0.36
	<i>c</i> = 4.11	Mg	0.50	0.75	0.15
C EM	<i>a</i> =3.67	Fe	0.50	0.07	0.25
(200 CP_2)	<i>b</i> = 7.69	Mg	0.00	0.09	0.75
(200GPa)	c = 3.56	Mg	0.50	0.25	0.75
P4132-Fe2Mg3	<i>a</i> = 5.79	Fe	0.18	0.82	0.32
(100GPa)		Mg	0.38	0.79	0.96

Table S2. Calculated Bader partial charges normalized by the total charges at 360GPa.

arge	Partial char	Atom	Structure
	+0.7	Fe	I4/mmm-Fe ₂ Mg
	-1.4	Mg	
	+5.5	Fe	
	-1.4	Mg	K-SM-Fellig ₄
	+4.0	Fe	Em 3m EoMa
	-1.3	Mg	<i>Fm-3m-</i> Felvig ₃
	+2.7	Fe	<i>P</i> 63/ <i>mmc</i> - FeMg ₂
	-1.3	Mg Fe	P63/mmc- FeMg ₂

	Mg	-1.4
	Fe1	+1.4
R-3 m - Fe ₂ Mg ₃	Fe2	+2.6
	Mg	-1.4
<i>Fd-3m</i> -FeMg	Fe	+1.4
	Mg	-1.4

Figure S1. Predicted stable crystal structures of Pmmn-FeMg₃ (a), Cmcm-FeMg₂ (b) and $P4_132$ -Fe₂Mg₃ (c).

Figure S2. Calculated phonon band structure for I4/mmm-Fe₂Mg (a), R-3m-FeMg₄ (b), Fm-3m-FeMg₃ (c), P63/mmc-FeMg₂ (d), R-3m-Fe₂Mg₃ (e) and Fm-3m-FeMg (f) at 360GPa, respectively.

Figure S3. Temperature (a) and pressure (b) as a function of MD time in NVT simulation for I4/mmm-Fe₂Mg. Structures for I4/mmm-Fe₂Mg at 0 ps (c) and 4 ps (d), respectively. The $3\times3\times4$ supercell of 108 atoms for the primitive cell was employed.

Figure S4. Theoretical pressure dependency of the volume/f.u. for Fe_2Mg (black line) and the sum of volume/atom for hcp Fe and bcc Mg (red line). The volume of Fe_2Mg is smaller than the sum of Fe and Mg under pressure, revealing that pressure help the mix of Fe and Mg.