SUPPORTING INFORMATION

$\mathrm{Be}_{2} \mathrm{~B}_{6}$ and $\mathrm{Be}_{2} \mathrm{~B}_{7}{ }^{+}$: two double aromatic inverse sandwich complexes with spin-triplet ground state

Ying-Jin Wang,* Chang-Qing Miao, Jing-Jing Xie, Ya-Ru Wei, and Guang-Ming Ren Department of Chemistry, Xinzhou Teachers University, Xinzhou 034000, China
*E-mail: yingjinwang@sxu.edu.cn

SUPPORTING INFORMATION

Table S1. Cartesian coordinates for global-minimum (GM) structures of (a) ($D_{6 \mathrm{~h}},{ }^{3} \mathrm{~A}_{1 \mathrm{~g}}$) $\mathrm{Be}_{2} \mathrm{~B}_{6}$ and (b) $\left(D_{7 \mathrm{~h}},{ }^{3} \mathrm{~A}_{2}\right) \mathrm{Be}_{2} \mathrm{~B}_{7}{ }^{+}$clusters at the PBE0/6-311+G* level.

Figure S1. Alternative optimized structures of $\mathrm{Be}_{2} \mathrm{~B}_{6}$ cluster at the $\mathrm{PBE} 0 / 6-311+\mathrm{G}^{*}$ level. Relative energies are shown in eV at PBE0 level with corrections for zero-point energies (ZPEs), as well as for top two isomers (in square bracket) at the singlepoint $\operatorname{CCSD}(\mathrm{T}) / 6-311+\mathrm{G}^{*} / / \mathrm{PBE} 0 / 6-311+\mathrm{G}^{*}$ level.

Figure S2. Alternative optimized structures of $\mathrm{Be}_{2} \mathrm{~B}_{7}{ }^{+}$cluster at the $\mathrm{PBE} 0 / 6-311+\mathrm{G}^{*}$ level. Relative energies are shown in eV at PBE0 level with corrections for zero-point energies (ZPEs), as well as for top two isomers (in square bracket) at the singlepoint $\operatorname{CCSD}(\mathrm{T}) / 6-311+\mathrm{G}^{*} / / \mathrm{PBE} 0 / 6-311+\mathrm{G}^{*}$ level.

Figure S3. Canonical molecular orbitals (CMOs) of $\left(D_{7 \mathrm{~h}},{ }^{3} \mathrm{~A}_{2}\right) \mathrm{Be}_{2} \mathrm{~B}_{7}{ }^{+}$. The CMOs are sorted to three subsets: (a) seven peripheral $\mathrm{B}-\mathrm{B} \sigma$ single bonds; (b) globally delocalized 4σ framework; (c) globally delocalized 6π framework.

Figure S4. The adaptive natural density partitioning (AdNDP) bonding pattern of ($D_{7 \mathrm{~h}},{ }^{3} \mathrm{~A}_{2}$) $\mathrm{Be}_{2} \mathrm{~B}_{7}{ }^{+}$cluster. Occupation numbers (ONs) are indicated.

Figure S5. Optimized structures of $\mathrm{Be}_{2} \mathrm{~B}_{5}{ }^{-}$cluster at the $\mathrm{PBE} 0 / 6-311+\mathrm{G}^{*}$ level. Relative energies are shown in eV at the single-point $\operatorname{CCSD}(\mathrm{T}) / 6-311+\mathrm{G}^{*} / / \mathrm{PBE} 0 / 6-311+\mathrm{G}^{*}$ and PBE0/6-311+G* (in square bracket) levels. The energies at the PBE0 level are corrected for zero-point energies (ZPEs).

Figure S1. Alternative optimized structures of $\mathrm{Be}_{2} \mathrm{~B}_{6}$ cluster at the $\mathrm{PBE} 0 / 6-311+\mathrm{G}^{*}$ level. Relative energies are shown in eV at PBE0 level with corrections for zero-point energies (ZPEs), as well as for top two isomers (in square bracket) at the singlepoint $\operatorname{CCSD}(\mathrm{T}) / 6-311+\mathrm{G}^{*} / / \mathrm{PBE} 0 / 6-311+\mathrm{G}^{*}$ level.

$D_{6 h},{ }^{3} \mathrm{~A}_{19}$
0.00
$[0.00]$

$D_{2 n},{ }^{1} \mathrm{~A}_{9}$ 0.44 [0.11]

$C_{2},{ }^{1} \mathrm{~A}$
0.91

$C_{2 v},{ }^{1} \mathrm{~A}_{1}$
2.01

$C_{1},{ }^{1} \mathrm{~A}$
1.23
$C_{1},{ }^{1} \mathrm{~A}$
1.91

$C_{2 v},{ }^{1} \mathrm{~A}_{1}$
0.94

$C_{s},{ }^{1} \mathrm{~A}^{\prime}$ 1.53

$C_{2},{ }^{1} \mathrm{~A}$ 1.53

$\mathrm{C}_{2 \mathrm{v}},{ }^{3} \mathrm{~A}_{2}$
2.12

$C_{1},{ }^{1} \mathrm{~A}$ 2.19

$C_{2},{ }^{1} \mathrm{~A}$
2.21

$C_{s},{ }^{3} \mathrm{~A}^{\prime \prime}$
2.22

$C_{2 n},{ }^{1} \mathrm{~A}_{9}$
2.26

$C_{1},{ }^{1} \mathrm{~A}$
2.28

$C_{2},{ }^{1} \mathrm{~A}$ 2.28

$C_{2 v},{ }^{3} \mathrm{~A}_{2}$
2.30
$C_{2 v},{ }^{1} \mathrm{~A}_{1}$
2.26

$C_{\mathrm{s},},{ }^{1} \mathrm{~A}$
2.40

(continued ...)

$C_{2},{ }^{1} \mathrm{~A}$
2.41

$C_{\mathrm{s}},{ }^{1} \mathrm{~A}^{\prime}$
2.41

$C_{1},{ }^{1} \mathrm{~A}$
2.43

43
$\mathrm{C}_{2 \mathrm{v}}{ }^{1} \mathrm{~A}_{1}$
2.48
$C_{1},{ }^{1} \mathrm{~A}$
2.53

$C_{\mathrm{s}},{ }^{1} \mathrm{~A}^{\prime}$ 2.87

$C_{\mathrm{s},}{ }^{1} \mathrm{~A}^{\prime}$
3.03

$C_{1},{ }^{1} \mathrm{~A}$
3.06

$D_{2 h},{ }^{1} A_{1 g}$
5.81

Figure S2. Alternative optimized structures of $\mathrm{Be}_{2} \mathrm{~B}_{7}{ }^{+}$cluster at the PBE0/6-311+G* level. Relative energies are shown in eV at PBE0 level with corrections for zero-point energies (ZPEs), as well as for top two isomers (in square bracket) at the singlepoint $\operatorname{CCSD}(\mathrm{T}) / 6-311+\mathrm{G}^{*} / / \mathrm{PBE} 0 / 6-311+\mathrm{G}^{*}$ level.

$D_{7 \mathrm{~h}},{ }^{3} \mathrm{~A}_{2}{ }^{\prime}$ 0.00 [0.00]

$C_{s},{ }^{1} A^{\prime}$
0.85

$C_{\mathrm{s}},{ }^{1} \mathrm{~A}^{\prime}$
1.16

$C_{\mathrm{s}},{ }^{1} \mathrm{~A}^{\prime}$ 1.18

$C_{1},{ }^{1} \mathrm{~A}$
1.18

$\mathrm{C}_{1},{ }^{1} \mathrm{~A}$
1.09

$C_{\mathrm{s}},{ }^{3} \mathrm{~A}^{\prime \prime}$
1.20

$C_{\mathrm{s}},{ }^{1} \mathrm{~A}^{\prime}$
$\mathrm{C}_{\mathrm{s}}, \mathrm{A}^{2}$
1.20

$C_{1},{ }^{1} \mathrm{~A}$ 1.22

$C_{2 v},{ }^{1} \mathrm{~A}_{1}$
1.25

$\mathrm{C}_{\mathrm{s}},{ }^{1} \mathrm{~A}^{\prime}$
1.39

$C_{1},{ }^{1} \mathrm{~A}$
1.31

$\mathrm{C}_{\mathrm{s}},{ }^{1} \mathrm{~A}^{\prime \prime}$
1.57

$C_{1},{ }^{1} \mathrm{~A}$
1.69

$C_{1},{ }^{1} \mathrm{~A}$
1.72

$C_{\mathrm{s}},{ }^{1} \mathrm{~A}^{\prime}$
(continued ...)

$C_{1},{ }^{1} \mathrm{~A}$
2.01

$C_{1},{ }^{1} \mathrm{~A}$
2.30

$C_{1},{ }^{1} \mathrm{~A}$
2.73

$C_{s},{ }^{1} \mathrm{~A}^{\prime}$
2.60

$C_{2 v},{ }^{1} \mathrm{~A}_{1}$
3.46
$C_{\mathrm{s}},{ }^{1} \mathrm{~A}^{\prime}$
2.35
$C_{\mathrm{s},}{ }^{1} \mathrm{~A}^{\prime}$
2.15
$C_{2 v},{ }^{1} \mathrm{~A}_{1}$
2.21

$\mathrm{C}_{\mathrm{s}},{ }^{1} \mathrm{~A}^{\prime}$
2.43

$C_{\text {s }}{ }^{1} \mathrm{~A}^{\prime}$
2.45

$\mathrm{C}_{2 \mathrm{v}},{ }^{3} \mathrm{~B}_{2}$
2.62
$C_{s,},{ }^{1} \mathrm{~A}^{\prime}$
2.65
$C_{2 v},{ }^{1} \mathrm{~A}_{1}$
 2.69

$C_{2},{ }^{1} \mathrm{~A}$ 4.06

$\mathrm{C}_{2 \mathrm{v}},{ }^{1} \mathrm{~A}_{1}$ 4.07

Figure S3. Canonical molecular orbitals (CMOs) of $\left(D_{7 \mathrm{~h}},{ }^{3} \mathrm{~A}_{2}{ }^{\prime}\right) \mathrm{Be}_{2} \mathrm{~B}_{7}{ }^{+}$. The CMOs are sorted to three subsets: (a) seven peripheral $B-B \sigma$ single bonds; (b) globally delocalized 4σ framework; (c) globally delocalized 6π framework.

Figure S4. The adaptive natural density partitioning (AdNDP) bonding pattern of ($D_{7 \mathrm{~h}},{ }^{3} \mathrm{~A}^{2}$) $\mathrm{Be}_{2} \mathrm{~B}_{7}{ }^{+}$cluster. Occupation numbers (ONs) are indicated.

Figure S5. Optimized structures of $\mathrm{Be}_{2} \mathrm{~B}_{5}{ }^{-}$cluster at the $\mathrm{PBE} 0 / 6-311+\mathrm{G}^{*}$ level. Relative energies are shown in eV at the single-point $\operatorname{CCSD}(\mathrm{T}) / 6-311+\mathrm{G}^{*} / / \mathrm{PBE0} 0 / 6-$ $311+\mathrm{G}^{*}$ and PBE0/6-311+G* (in square bracket) levels. The energies at the PBE0 level are corrected for zero-point energies (ZPEs).

Table S1. Cartesian coordinates for global-minimum (GM) structures of (a) ($\left.D_{6 \mathrm{~h}},{ }^{3} \mathrm{~A}_{1 \mathrm{~g}}\right) \mathrm{Be}_{2} \mathrm{~B}_{6}$ and (b) $\left(D_{7 \mathrm{~h}},{ }^{3} \mathrm{~A}_{2}{ }^{\prime}\right) \mathrm{Be}_{2} \mathrm{~B}_{7}{ }^{+}$clusters at the PBE0/6-311+G* level.
(a) $\mathrm{Be}_{2} \mathbf{B}_{6}\left(D_{6 \mathrm{~h}},{ }^{\mathbf{3}} \mathbf{A}_{1 \mathrm{~g}}\right)$

B	0.00000000	1.57221600	0.00000000
B	-1.36157900	0.78610800	0.00000000
B	-1.36157900	-0.78610800	0.00000000
B	0.00000000	-1.57221600	0.00000000
B	1.36157900	-0.78610800	0.00000000
B	1.36157900	0.78610800	0.00000000
Be	0.00000000	0.00000000	1.09717100
Be	0.00000000	0.00000000	-1.09717100

(b) $\mathrm{Be}_{2} \mathbf{B}_{7}{ }^{+}\left(\boldsymbol{D}_{7 \mathrm{~h}},{ }^{\mathbf{3}} \mathbf{A}_{2}{ }^{\prime}\right)$
$\begin{array}{lllll}\mathrm{B} & 0.00000000 & 1.77730400 & -0.00000000\end{array}$
$\begin{array}{lllll}B & -0.77114331 & -1.60129557 & -0.00000000\end{array}$
$\begin{array}{lllll}B & -1.73274328 & -0.39548735 & -0.00000000\end{array}$
$\begin{array}{llll}\text { B } & 1.73274328 & -0.39548735 & -0.00000000\end{array}$
$\begin{array}{llll}\mathrm{B} & 1.38955222 & 1.10813092 & -0.00000000\end{array}$
$\begin{array}{llll}\text { B } & -1.38955222 & 1.10813092 & -0.00000000\end{array}$
$\begin{array}{lllll}B & 0.77114331 & -1.60129557 & -0.00000000\end{array}$
$\mathrm{Be} \quad 0.00000000-0.00000000 \quad 1.06748000$
$\begin{array}{lllll}\mathrm{Be} & -0.00000000 & -0.00000000 & -1.06748000\end{array}$

