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1. Experimental

1.1. Chemicals and materials

All chemicals in this work were analytical and can be used directly without 

purification. Cobalt chloride hexahydrate(CoCl2⋅6H2O, >99%), sodium 

borohydride(NaBH4, >99%), sodium hydroxide(NaOH) and absolute ethanol 

(C2H5OH), were supplied by Sinopharm Chemical Reagent Co. Ltd(Shanghai, 

China). The experiment used deionized water with a resistivity of > 10.0 MΩ.

1.2. Synthesis of cobalt boride-activated carbon

In a typical experiment, cobalt boride nanoparticles were synthesized by 

liquid-phase synthesis method1, 2. 4 mmol CoCl2⋅6H2O was added into 50 mL 

deionized water, which had been removed the dissolved oxygen by purging N2. A 

certain amount of activated carbon was thrown into the solution, and the 

solution was kept on stirring for about half an hour. Dissolve 10 mmol NaBH4 

and 3 mmol NaOH in 20 mL deionized water. Then the aqueous solution of 
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NaBH4 was dropwise added to cobalt chloride solution under continuous stirring. 

Severe frothing occurs if the sodium borohydride was added rapidly. After 

stirring for an hour, the obtained products were collected by suction filtration 

and washing which used distilled water and absolute ethanol. The black powder 

obtained after cleaning was dried at 60 °C for 12 h in a vacuum oven. Five 

dissimilar CoB-AC electrodes(C1, C2, C3, C4, C5) have been composed by adding 

different amounts of activated carbon(0.0096 g, 0.0191 g, 0.02871 g, 0.0383 g, 

0.0479 g). The unsupported CoB(C0) was prepared by the same method with no 

activated carbon into the reactant solution.

1.3. Material characterization

The obtained C0, C3 were characterized by X-ray diffraction(XRD, Rigaku, 

D/MAX-2400) with a standard Cu Kα radiation source. Transmission electron 

microscope(TEM, JEOL JEM-2010) monitored The microstructure of samples. 

Nitrogen adsorption and desorption detection were achieved at 77 K using a 

surface area and pore size analyzer(JW-BK200). The specific surface areas of the 

samples were calculated by the Brumauer–Emmett–Teller(BET) theory. The 

mesopore and micropore size distribution was estimated from Barrett–Joyner–

Halanda(BJH) method and Horvath–Kawazoe(HK) method, respectively. 

1.4. Electrode preparation

The electrochemical behaviors of the CoB-AC composite electrodes were 

studied with a standard two-electrode system and a three-electrode device in a 6 

M KOH alkaline aqueous electrolyte, in which Hg/HgO electrode and Pt sheet 

were used as the reference and counter electrodes, respectively. The working 

electrodes were made as follows3. The active material (C0, C1, C2, C3, C4, C5), 

acetylene black, and conducting graphite were mixed in a mass ratio of 80:7.5:7.5. 

Put them with polytetrafluoroethylene(PTFE, 5 wt%) binder and a few drops of 

ethanol onto a piece of foam nickel substrate(1 cm × 1 cm). Then dried at 60 °C 

for 12 h. The mass loading of nickel foam was 4 mg cm2.



1.5. Electrochemical evaluation

The electrochemical capacitive performance was measured with a CHI660E 

tester(Shanghai, China). cyclic voltammetry(CV), galvanostatic charge-

discharge(GCD) measurement and electrochemical impedance spectroscopy(EIS) 

measurement were employed to investigate electrochemical behaviors. The 

cycling performance was estimated using an electrochemical working 

station(CT2001A, Wuhan, China).

The specific capacitance(C, F g-1) of the electrode materials can be calculated 

from the galvanostatic discharged curves according to the following eqn (1)4:

C= …………………………………………………(1)

𝐼Δ𝑡
𝑉𝑚

where I is the current (mA), V is the potential (V), t is the discharge time (s), and 

m is the mass of the active material in the electrode (mg).

An asymmetric supercapacitor(ASC) configuration was constructed by using 

CoB-AC and AC as positive and negative electrodes face to face in 6 M KOH. The Q 

of each electrode depends on the specific capacitance(Cs), the potential range of 

the charge-discharge tests(V) and the mass of the active material(m) according 

to eqn (2)4:

Q=Cs×V×m……………………………………………(2)

According to the charge-balance principle(Q+=Q-), where Q+ and Q- 

represent the charges stored in the positive and negative electrodes, respectively, 

the specific mass ratio of CoB-AC to AC was thus designed as 1.187:1 in such an 

asymmetric device. And the total mass of electroactive materials in the device is 

4.478 mg. The calculation of specific capacitance(Cdevice), energy density(E), and 

power density(P) is based on the total mass of the cathode and anode according 

to eqn (3)–(5)4:



Cdevice = ………………………………………………(3)

𝐼Δ𝑡
𝑉𝑚

E= ×Cdevice×V2…………………………………………(4)

1
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P= ………………………………………………………(5)

𝐸
𝑡

2. Supplementary results

Figure S1. XRD pattern of activated carbon.



Figure S2. A photo of a sample of cobalt boride attracted by a U-shaped magnet 

showing the magnetic properties of the synthesized cobalt boride.

Sample CoB wt% C wt%

C0 100 0

C1 96.56 3.44

C2 93.35 6.65

C3 90.55 9.45

C4 87.86 12.14

C5 85.04 14.96

Table S1. Material composition (wt %) of the CoB-AC samples.



Figure S3. Three-electrode electrochemical measurements of the CoB-AC-0(C0) 

electrode.



Figure S4. Three-electrode electrochemical measurements of the CoB-AC-1(C1) 

electrode.

Figure S5. Three-electrode electrochemical measurements of the CoB-AC-2(C2) 

electrode.



Figure S6. Three-electrode electrochemical measurements of the CoB-AC-4(C4) 

electrode.



Figure S7. Three-electrode electrochemical measurements of the CoB-AC-5(C5) 

electrode.

Figure S3-7 show the electrochemical measurements of different CoB-AC 

electrodes. The cyclic voltammogram of CoB-containing samples exhibit 

undoubtedly the reversible faradaic redox reactions attributing to CoB. The 

platforms of the triangular shape shown by the galvanostatic charge-discharge 

curves correspond to the redox peaks of cyclic voltammogram. The specific 

capacitance of these electrodes increases first and then decreases. A small semi-

circle is observed in the high-frequency range of the Nyquist plot, followed by a 

nearly vertical line in the lower frequency region. These results indicate a small 

charge transfer resistance and good capacitive behavior due to fast electron 

transport in the electrode/electrolyte interface and between the active electrode 

material and current collector.



Figure S8 Three-electrode electrochemical measurements of the AC electrode. a. 

cyclic voltammograms of AC at variable scan rates from 5 to 100 mV s-1 within 

the potential window from -1.0 to 0.0 V. b galvanostatic charge-discharge curves 

at various current densities from 0.5 to 10 A g-1 within the potential window 

from -1.0 to 0 V; c specific capacitance as a function of the current densities and 

capacitance retention rate at various current densities; d Nyquist plots measured 

with an amplitude of 10 mV over the frequency range from 100 000 to 0.1 Hz, 

inset: the magnified high frequency region.

The CV test of AC is carried out in aqueous electrolytes(6 M KOH). It can be 

observed from Figure S8a that the CV curves of AC show excellent rectangular 

shapes from -1.0 to 0.0 V over a wide ranges of voltage scan rates, indicating an 

ideal electrical double layer effect of the tested supercapacitors, the fast electron 

transfer, and electrolyte ions diffusion. There is a clear contrast with the CV 

curves of the previous CoB-AC. More accurate GCD tests were conducted at 

different current densities, as shown in Figure S8b, where the GCD curves are 

not isosceles triangle due to the coexistence of EDLC and pseudocapacitance5. 



From the GCD curves, a decent specific capacitance(245.2 F g-1) was calculated at 

a current density of 0.5 A g-1. Note that the calculated specific capacitance of 

AC(Figure S8c) displays a decreasing tendency with the increase of GCD current 

density from 0.5 to 10 A g-1. But at a current density of 10 A g-1 still owns a high 

specific capacitance of 185 F g-1. The retention ratio was calculated to be 75.4% 

in the range of 1–20 A g-1. The good rate performance reflects that the electrolyte 

ions could transfer rapidly and smoothly in the pores of this carbon. The Nyquist 

plot exhibits two distinct regions including a semicircle in the high-frequency 

region and a sloped line in the low-frequency region(Figure S8d). The nearly 

vertical line of all samples in the low-frequency region validates the conclusion 

that the dominant charge-storage mechanism for AC is EDLC. In the high-

frequency region, the semicircle corresponds to the charge-transfer resistance at 

the electrode/electrolyte interface. Obviously, AC presents a small charge-

transfer resistance, which is consequently related to its high electrical 

conductivity derived from its relatively high carbonization degree and moderate 

heteroatom doping level.
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