Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

An instantaneous fluorescent probe for detecting hydrogen sulfide in biological systems

Qian Fang^a, Haiqing Xiong^a, Lei Yang^{a, b*}, Benhua Wang^{a*} and Xiangzhi Song^{a, c}

^a College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China.

^b Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, China.

^c Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, Hunan 410083, China.

*Corresponding authors.

Fax: +86-731-88836954; Tel: +86-731-88836954; E-mails: benhuawang@csu.edu.cn.

probes	response time	detection limit (µM)	medium	literatures
Из ОНС ОСО	>120 min	0.22	In water (containing 5% acetonitrile)	New J. Chem., 2014, 38 , 2770-2773
	40 min	0.0136	In PBS buffer (containing 1.0 mM CTAB)	<i>RSC Adv.</i> , 2015, 5 , 98154-98159
N ₃	30 min	0.018	In PBS buffer (1:1, v/v)	<i>Talanta</i> , 2019, 195 , 850-856
	-	0.25	In DMF/PBS buffer (6:4, v/v, 10 mM)	New J. Chem., 2016, 40 , 6384-6388
N N O CN N N N	60 min	0.15	In Tris buffer (50 mM, pH = 8.0, containing 50% DMF)	<i>Talanta</i> , 2015, 135 , 149-154
	45 min	0.112	In PBS buffer (pH = 7.4)	Tetrahedron Lett., 2013, 54 , 4826-4829
F F N ₃	10 min	0.259	In HEPES buffer (10 mM, pH = 7.4)	Org. Biomol. Chem., 2013, 11 , 8166-8170
N C N N N N N N N N N N N N N N N N N N	60 min	-	In PBS buffer (pH 7.4, containing 0.05% DMF)	<i>J. Fluoresc.</i> , 2013, 23 , 181-186
N CN CN	30 min	0.0057	In HEPES buffer (containing 1.0 mM CTAB)	Org. Biomol. Chem., 2018, 16 , 1150-1156
	>240 min	1.3	In PBS buffer (pH = 7.4)	New J. Chem., 2017, 41 , 10432-10437
	30 min	2.4	In PBS-CAN buffer (1:1, v/v)	Talanta, 2014, 121 , 122-126
	60 min	10	In HEPES buffer (20 mM, pH 7.4)	J. Am. Chem. Soc., 2011, 133 , 10078-10080

 Table S1. Some Fluorescent probes for hydrogen sulfide.

Experimental section

Synthesis route of DEA-Coumarin-N₃

Scheme S1. Synthesis of **DEA-Coumarin-N**₃. (a) NaN₃, N-methylpyrrolidone (NMP), room temperature, 2 h, yield 81%.

Synthesis of S1

S1 was synthesized according to the reported method.¹

Synthesis of DEA-Coumarin-N₃

To a solution of **S1** (0.251 g, 1 mmol) in 1 mL NMP was added sodium azide (0.078 g, 1.2 mmol). The mixture was stirred at room temperature for 2 h and poured into 50 mL H₂O. After filtration, the crude solid was dried under vacuum and purified by silica column chromatography to give product **DEA-Coumarin-N**₃ (210 mg, yield 81%). ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 9.0 Hz, 1H), 6.55 (dd, *J* = 9.0, 2.2 Hz, 1H), 6.47 (d, *J* = 2.1 Hz, 1H), 5.76 (s, 1H), 3.41 (q, *J* = 7.1 Hz, 4H), 1.21 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 162.08, 156.28, 153.82, 151.68, 124.37, 108.63, 103.51, 97.24, 93.65, 44.84, 12.40. HRMS (EI) m/z: calcd for C₁₃H₁₄N₄O₂ [M+Na]⁺, 281.1009; found, 281.1030.

Study of the photoinduced electron transfer process (PET)

Fig. S1 Orbital energy diagrams of the photoinduced electron transfer process of probe **CA** before (A) and after (B) the reaction with H_2S .

We performed DFT calculation on probe CA and the expected product of probe CA with H₂S, CA-NH₂. As shown in Fig. S1, a strong PET effect in probe CA can be triggered by azido group while the PET process is inhibited in CA-NH₂. To make a

better explanation, we made compounds DEA-Coumarin-N₃, DEA-Coumarin-CHO, Julo-Coumarin-N₃-CHO, **Julo-Coumarin-CHO** and (Scheme S2). Both **DEA-Coumarin-N**₃ (Fig. S2) and **DEA-Coumarin-CHO**² exhibited weak fluorescence. But probe CA was completely non-fluorescent. Furthermore, TICT (twisted intramolecular charge transfer) process also contributed to the fluorescence quench of probe CA (twisted diethylamino group at excited state). Compound Julo-Coumarin-CHO containing a rigid julolidine moiety without azido group had been reported to be strongly fluorescent.² In contrast, Julo-Coumarin-N₃-CHO was completely non-emissive and exhibited strong fluorescence after reacting with H₂S (Fig. S3). As a result, it could be confirmed that the fluorescence quench of Julo-Coumarin-N₃-CHO was mainly caused by the PET process from azido group.

Scheme S2. Chemical structures of CA, DEA-Coumarin-N₃, DEA-Coumarin-CHO, Julo-Coumarin-N₃-CHO and Julo-Coumarin-CHO.

Fig. S2 Fluorescence spectra of compound **DEA-Coumarin-N**₃ (10.0 μ M) in the absence (black) and presence (red) of Na₂S (15 equiv.) in acetonitrile/deionized water (3:7, v/v). Excitation wavelength: 355 nm.

Fig. S3 Fluorescence spectra of **Julo-Coumarin-N₃-CHO** (10.0 μ M) in the absence (black) and presence (red) of Na₂S (15 equiv.) in acetonitrile/deionized water (3:7, v/v). Excitation wavelength: 360 nm.

Fig. S4 Absorption spectra of probe **CA** (10.0 μ M) in the absence (black) and presence (red) of Na₂S (15.0 equiv.) in acetonitrile/deionized water (3:7, v/v).

Fig. S5 Normalized absorbance spectra (A) and emission spectra (B) of **DEA-Coumarin-N**₃ (10.0 μ M) in the absence (black) and presence (red) of Na₂S (15.0 equiv.) in acetonitrile/deionized water (3:7, v/v). Excitation wavelength: 355 nm. slit widths: 5.0 nm/5.0 nm.

Fig. S6 Plot of fluorescence intensity of DEA-Coumarin-N₃ (10.0 μ M) with the addition of Na₂S (15.0 equiv.) in acetonitrile/deionized water (3:7, v/v) versus time. Excitation wavelength: 355 nm. slit widths: 5.0 nm/5.0 nm.

Fig. S7 Plot of fluorescence intensity of probe **CA** (10.0 μ M) with the addition of Na₂S and NaHS in different concentrations (0.1 μ M, 1 μ M and 10 μ M) in acetonitrile/deionized water (3:7, v/v) versus time.

Fig. S8 ¹H NMR (400 MHz) spectra of dye CA-NH₂ (a) and the isolated product of probe CA with Na₂S (b) in CD₃OD.

Fig. S9 HRMS spectrum of the reaction product from probe CA with Na₂S.

Fig. S10 Cytotoxicity assay of probe CA at different concentrations for HeLa cells.

Fig. S11 ¹H NMR spectrum of compound 2 in CDCl₃.

Fig. S12 ¹H NMR spectrum of probe CA in CDCl₃.

Fig. S13 ¹³C NMR spectrum of probe CA in CDCl₃.

Fig. S14 HRMS spectrum of probe CA.

Fig. S15 ¹H NMR spectrum of dye **CA-NH**₂ in CD₃OD.

Fig. S16 ¹H NMR spectrum of the reaction product of probe CA with Na₂S in CD₃OD.

Fig. S17 ¹H NMR spectrum of dye CA-NH₂ in DSMO-*d*₆.

Fig. S18 ¹³C NMR spectrum of dye CA-NH₂ in DSMO-d₆.

Fig. S19 ¹H NMR spectrum of DEA-Coumarin-N₃ in CDCl₃.

Fig. S20 ¹³C NMR spectrum of DEA-Coumarin-N₃ in CDCl₃.

Fig. S21 HRMS spectrum of DEA-Coumarin-N₃.

Fig. S22 ¹H NMR spectrum of Julo-Coumarin-N₃-CHO in CDCl₃.

References

- J. Liu, Y.-Q. Sun, Y. Huo, H. Zhang, L. Wang, P. Zhang, D. Song, Y. Shi and W. Guo, J. Am. Chem. Soc., 2014, 136, 574-577.
- 2 X. Cheng, S. Qu, L. Xiao, W. Li and P. He, J. Photochem. Photobiol., 2018, 364, 503-509.