A stable luminescent zinc-organic framework as dual-sensor

towards Cu²⁺ and Cr₂O₇²⁻, and excellent platforms encapsulated

Ln³⁺ for systematic color tuning and white-light emission

Bo-Wen Qin, Xiao-Ying Zhang,* and Jing-Ping Zhang*

Advanced Energy Materials Research Center, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China Email: zhangxy218@nenu.edu.cn; jpzhang@nenu.edu.cn. Fax: +86-431-85684027

Compound	Compound 1		
empirical formula	$C_{36}H_{24}N_6O_{10}Zn$		
formula weight	765.99		
<i>T</i> [K]	293(2)		
crystal system	orthorhombic		
space group	Fdd2		
<i>a</i> [Å]	39.603		
<i>b</i> [Å]	43.585		
<i>c</i> [Å]	38.789		
α [⁰]	90.00		
β [°]	90.00		
γ [°]	90.00		
V	66953.570		
Ζ	16		
$\rho_{\text{calcd}} [\text{g cm}^{-3}]$	0.990		
$\mu [\mathrm{mm}^{-1}]$	0.903		
<i>F</i> (000)	20256		

reflections collected	45496
independent reflections	29500
GOF	0.977
$R_1,^{[a]} I > 2\sigma(I)$	0.0648
wR_2 , ^[b] $I > 2\sigma(I)$	0.1865
[a] $R_1 = \sum (F_0 - F_c) / \sum F_0 $. [b] $wR_2 =$	$\overline{\left[\sum w(F_0 ^2 - F_c ^2)^2 / \sum w(F_0^2)^2\right]^{1/2}}.$

Table S2. Selected bond distances (A) and	bond angles () for complex 1
--	-------------------------------

Table 52. Selected bond distances (A) and bond angles () for complex 1.							
Zn(1)-O(16)	2.044(7)	Zn(2)-O(2)	2.040(7)	Zn(3)-O(10)#1	2.109(7)		
Zn(1)-O(1)	2.047(8)	Zn(2)-O(12)	2.052(8)	Zn(4)-O(20)#2	1.997(8)		
Zn(1)-O(11)	2.063(7)	Zn(2)-N(6)#1	2.054(7)	Zn(4)-O(5)#3	2.021(8)		
Zn(1)-O(6)	2.079(9)	Zn(3)-O(14)	2.032(7)	Zn(4)-O(9)#1	2.036(8)		
Zn(1)-N(1)	2.079(8)	Zn(3)-O(19)#2	2.033(8)	Zn(4)-O(15)	2.066(8)		
Zn(2)-O(7)	2.008(8)	Zn(3)-O(4)#3	2.049(8)	Zn(4)-N(12)#4	2.091(8)		
Zn(2)-N(17)	2.028(7)	Zn(3)-N(7)	2.074(8)				
O(16)-Zn(1)-C	D (1)	89.0(3)	O(14)-Zn(3)-O(19)#2		87.6(3)		
O(16)-Zn(1)-C	D (11)	89.9(3)	O(14)-Zn(3)-O(4)#3		158.8(3)		
O(1)-Zn(1)-O((11)	154.8(3)	O(19)#2-Zn(3)-O(4)#3		88.6(3)		
O(16)-Zn(1)-C) (6)	159.3(3)	O(14)-Zn(3)-N(7)		103.3(3)		
O(1)-Zn(1)-O((6)	88.4(4)	O(19)#2-Zn(3)-N(7)		102.3(3)		
O(11)-Zn(1)-C	0(6)	84.0(4)	O(4)#3-Zn(3)-N(7)		97.8(3)		
O(16)-Zn(1)-N	N(1)	101.8(3)	O(14)-Zn(3)-O(10)#1		90.0(3)		
O(1)-Zn(1)-N((1)	103.1(3)	O(19)#2-Zn(3)-O(10)#1		156.4(3)		
O(11)-Zn(1)-N	I (1)	101.8(3)	O(4)#3-Zn(3)-O(10)#1		85.2(3)		
O(6)-Zn(1)-N((1)	98.7(4)	N(7)-Zn(3)-O(10)#1		101.0(3)		
O(7)-Zn(2)-O((17)	156.2(3)	O(20)#2-Zn(4)-O(5)#3		88.8(4)		
O(7)-Zn(2)-O((2)-O(2) 91.8(4) O(20)#2-Zn(4)-O(9)#1		158.9(3)				
O(17)-Zn(2)-C	D(17)-Zn(2)-O(2) 86.5(3) O(5)#3-Zn(4)-O(9)#1		88.6(4)				
O(7)-Zn(2)-O((12)	85.5(4)	O(20)#2-Zn(4)-O(15)		87.2(4)		
O(17)-Zn(2)-C	D (12)	88.8(4)	O(5)#3-Zn(4)-O(15)		157.1(3)		
O(2)-Zn(2)-O((12)	161.8(3)	O(9)#1-Zn(4)-O(15)		87.0(4)		
O(7)-Zn(2)-N((6)#1	107.2(3)	O(20)#2-Zn(4)-N(12)#4		97.6(3)		
O(17)-Zn(2)-N	N(6)#1	96.5(3)	O(5)#3-Zn(4)-N(12)#4		103.8(4)		
O(2)-Zn(2)-N((6)#1	99.1(3)	O(9)#1-Zn(4)-N(12)#4		103.4(4)		
O(12)-Zn(2)-N(6)#1 9		98.9(3)	O(15)-Zn(4)-N(12)#4 99.1(3)				

Symmetry codes: #1: x+1/4, -y+3/4, z-1/4; #2: x+1/2, y+1/2, z; #3: x+1/4, -y+1/4, z+1/4; #4: x-1/4, -y+1/4, z-1/4

Fig. S2 The PXRD spectra of compound 1 after activated and freshly prepared.

Fig. S3 The $Zn_2O_8N_2$ paddle-wheel SBU and its topological structure.

Fig. S6 PXRD spectra of complex 1 after heated for 4 hours at 300°C.

Fig. S7 PXRD spectra of compound 1 after being soaked in various boiling solvents for 36 hours.

Fig. S8 Solid-state excitation spectra of compound **1**, PTD ligand, and H₂OBA ligand at room temperature.

Fig. S9 Solid-state emission spectra of PTD ligand (excitated at 375 nm), compound **1** (excitated at 380 nm) and OBA ligand (excitated at 346 nm) at room temperature.

Fig. S10 PXRD patterns of as-synthesized compound 1 and metal ions-incorporated samples.

Fig. S11 Luminescence spectra of solid compound 1 treated with 10 mM various cations in DMF solutions for 24 hours.

Fig. S12 Luminescence spectra of solid compound 1 treated with Cu^{2+} ions at various concentrations in 10 mL DMF solutions for 24 hours.

Fig. S13 Stern-Volmer plot of I_0/I vs. the concentration of Cu²⁺ ions in DMF.

Fig. S14 The comparisons of luminescent intensities of compound 1 treated with 10 mM various cations in 10 mL DMF solutions for 24 hours. Mix: mixture of Zn^{2+} , Na^+ , Mg^{2+} and Cd^{2+} .

Fig. S15 Luminescence spectra of solid compound 1 treated with 10 mM various anions in DMF solutions for 24 hours.

Fig. S16 PXRD patterns of as-synthesized compound 1 (DMF) and some anions-incorporated samples.

Fig. S17 Luminescence spectra of solid compound **1** treated with $Cr_2O_7^{2-}$ ions at various concentrations in 10 mL DMF solutions for 24 hours.

Fig. S18 Stern-Volmer plot of I_0/I vs. the concentration of $Cr_2O_7^{2-}$ ions in DMF.

Fig. S19 PXRD patterns of as-synthesized compound 1 and some lanthanide-doped

samples.

Fig. S20 The emission spectra ($\lambda = 283$ nm) of Tb_{0.4}/Eu_{0.6} (a) and Tb_{0.8}/Eu_{0.2} (b) doped compound **1**.

Fig. S21 Luminescence decay curves. (a) $\tau_1 = 813.8381$ and $\tau_2 = 1673.1261$ µs for Tb₁/Eu₀. (b) $\tau_1 = 532.2680$ and $\tau_2 = 1500.8012$ µs for Tb_{0.8}/Eu_{0.2}. (c) $\tau_1 = 612.6855$ and $\tau_2 = 1428.0812$ µs for Tb_{0.6}/Eu_{0.4}. (d) $\tau_1 = 488.5423$ and $\tau_2 = 1372.6250$ µs for Tb_{0.4}/Eu_{0.6}. (e) $\tau_1 = 530.6851$ and $\tau_2 = 1221.9450$ µs for Tb₀/Eu₁.

Fig. S22 The Emission spectra (a) and CIE chromaticity diagram (b) of compound **1** incorporated by lanthanide ions upon excitation at 283 nm. The samples were prepared by doping 50 mg as-synthesized compound **1** with different molar mass Ln^{3+} (Eu³⁺/Tb³⁺) in 10 mL DMF. a: 5×10^{-1} mmol with Eu³⁺/Tb³⁺ (1/4); b: 5×10^{-2} mmol with Eu³⁺/Tb³⁺ (1/4); c: 5×10^{-5} mmol with Eu³⁺/Tb³⁺ (1/4); d: 5×10^{-5} mmol with Eu³⁺/Tb³⁺ (1/3); e: 5×10^{-5} mmol with Eu³⁺/Tb³⁺ (3/7).

Fig. S23 The PXRD patterns of as-synthesized compound 1 and white-light emission compound 1 with Ln^{3+} -doped.

Fig. S24 The photograph of Ln^{3+} -doped compound 1 with white-light emission.

Fig. S25 The N_2 sorption isotherms for compound 1, outgas temperature is 180° C under vacuum.

Fig. S26 The pore size distributions of compound 1.

Fig. S27 (a) Gas adsorption isotherms of CO_2 and CH_4 for compound **1** at 273 K and 298 K; (b) Isosteric heat of CO_2 adsorption for compound **1** estimated by the virial equation from the adsorption isotherms at 273 K and 298 K.

Fig. S28 Virial analysis of the CO₂ adsorption data at 273 and 298 K for compound **1**. Fitting results: $a_0 = -9.4742$, $a_1 = 0.02258$, $a_2 = 0.00252$, $a_3 = -0.00008$, $a_4 = 7.4482E-7$, Chi[^]2 = 0.00003, R[^]2 = 0.99998.