Supporting Information

A diversity-Oriented Synthesis of Polyheterocycles *via* Cyclocondensation of Azomethine Imine

Arshad J. Ansari,^a Ramdas S. Pathare,^a Anita Kumawat,^b Antim K. Maurya,^c Sarika Verma,^e Vijai K. Agnihotri,^c Rahul Joshi^b Ramesh K. Metre^d Ashoke Sharon,^e R. T. Pardasani,^a Devesh M. Sawant^{*a}

^aSchool of Chemical Sciences and Pharmacy, Central University of Rajasthan NH-8, Bandarsindri, Ajmer-305817 (Raj) India, ^bDepartment of Chemistry, University of Rajasthan JLN Marg, Jaipur 302004, ^cNatural product chemistry and process development division, CSIR-IHBT, Palampur, Himachal Pradesh -176061, ^dDepartment of Chemistry, Indian Institute of Technology Jodhpur, Karwad, Jodhpur-342037, Rajasthan, India. ^eDepartment of Chemistry, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India.

*dms@curaj.ac.in

Table of content

S. No.		Content			
S1		General Considerations	S2		
S2		Synthesis of azomethine imine 4	S3		
	S2.1	Detailed screening of 3-CR for the synthesis of azomethine imine 4	S3		
	S2.2	Experimental procedure for the synthesis of azomethine imine 4	S3		
	S2.3	Analytical data of compound 4	S4		
	S2.4	Crystallographic data of 4f	S6		
S3		Synthesis of compound 6	S9		
	S3.1	Experimental procedure for the synthesis of β -aryl nitroalkenes 5	S9		
	S3.2	Screening of 4-CR for the synthesis of compound 6	S9		
	S3.3	Experimental procedure for the <i>sequential</i> synthesis of 6 (Method A)	S10		
	S3.4	Experimental procedure for <i>one-pot</i> synthesis of 6 (Method B)	S10		
	S3.5	Analytical data of compound 6	S10		
	S3.6	Crystallographic data of 6c	S14		
S4		Synthesis of compound 8	S16		
	S4.1	Screening of 4-CR for the synthesis of compound 8	S16		
	S4.2	Experimental procedure for the <i>sequential</i> synthesis of 8 (Method C)	S16		
	S4.3	Experimental procedure for <i>one-pot</i> synthesis of 8 (Method D)	S17		
	S4.4	Analytical data of compound 8	S17		
S 5		Synthesis of compound 11	S19		
	S5.1	Screening of 4-CR for the synthesis of compound 11	S19		
	S5.2	Experimental procedure for the <i>sequential</i> synthesis of 11 (Method E)	S19		
	S5.3	Experimental procedure for <i>one-pot</i> synthesis of 11 (Method F)	S19		
	S5.4	Analytical data of compound 11	S20		
S6		Synthesis of compound 12	S22		
	S6.1	Experimental procedure for the <i>sequential</i> synthesis of 12 (Method G)	S22		
	S6.2	Analytical data of compound 12	S22		
S7		References	S22		
S 8		Copy of ¹ H and ¹³ C spectrum	S21		

S1. General Considerations

All the reactions were carried out using dried reaction vessel with Teflon screw caps. Ortho-substituted benzaldehyde was synthesized by reported literature.¹ Aryl sulfonyl hydrazides were also synthesized by previously described protocol.² Other substrates such as isocyanides, allenoates, α -halohydroxamates and aliphatic cyclicketones were purchased from Sigma, TCI, and spectrochem used as such without any further purification. THF and toluene were freshly dried and distilled kept under an inert atmosphere. Other reagents were purchased from Aldrich or Spectrochem used as such without purification. Analytical TLC was performed using 2 x 4 cm plate coated with a 0.25mm thickness of silica gel (60F-254 Merck), and visualization was accomplished with UV light or I₂/ KMnO₄ staining. Melting points were uncorrected. ¹H, ¹³C NMR, Recorded on Bruker's Ascend 500MHz spectrophotometer operating at 500.3 MHz for ¹H and 125.8 MHz for ¹³C experiments; spectra were recorded at 295 K in CDCl₃; chemical shifts were calibrated to the residual proton and carbon resonance of the solvent: CDCl₃ (¹H δ 7.269; ¹³C δ 77.0). Mass spectra were recorded on electrospray ionization

quadrupole time of flight (ESI-QTOF-MS). The abbreviations used: s=singlet, d=doublet, t=triplet, q=quartet, dd=double doublet, m=multiplet, br s = broad singlet & br = broad signal.

S2. Synthesis of azomethine imine 4

S2.1. Detailed Screening of 3-CR for the synthesis of azomethine imine

Initially, we started with the screening of various parameters for the synthesis of azomethine amine from a mixture of 2-azidobenzaldehyde **1a**, *tert*-butyl isocyanide **2a** and tosyl hydrazide **3a** in toluene at ambient temperature. At the outset, different palladium sources were examined as a catalyst in this reaction. Of these, $Pd(OAc)_2$ produced the azomethine imine **4a** in 51% yield in (table 1, entry 1). In contrast, other Pd-salts such as $Pd(PPh_3)_4$, $Pd(PPh_3)_2Cl_2$, $PdCl_2$, and $Pd_2(dba_3)$ filed to promote this reaction (entry 2-5). The presence of a nagging side product, urea **4a'**, was observed, which was successfully ruled out by employing 4 Å molecular sieves (entry 6). On the basis of a survey of different solvents, toluene gave the best result with 85 % yield of **4a** (entry 6-11). The reaction stumbled in DMF (entry 12). The efficiency was not affected when the catalytic amount of $Pd(OAc)_2$ was reduced to 7.5 mol% (entry13). However, the further reduction in catalytic loading had a detrimental effect on the overall yield of the title compound (entry 14). Reaction failed to initiate in the absence of a catalyst (entry 15). After screening the solvent, it was found that toluene and THF are acting as the best solvent for the reaction.

Table S1: Optimization of 3-CR for the synthesis of azomethine imine^a

Entry	Catalyst	Additive	Solvent	Isolate	d yield ^b
				4 a	4a'
1.	$Pd(OAc)_2(10 \text{ mol}\%)$	-	toluene	51	41
2.	$Pd(PPh_3)_4 (10 \text{ mol}\%)$	-	toluene	35°	55
3.	$Pd(PPh_3)_2Cl_2(10 \text{ mol}\%)$	-	toluene	23°	36
4.	$PdCl_2(10 mol\%)$	-	toluene	0^{c}	0
5.	$Pd_2(dba)_3(10 \text{ mol}\%)$	-	toluene	15°	10
6.	$Pd(OAc)_2(10 \text{ mol}\%)$	4 Å MS	toluene	85	-
7.	$Pd(OAc)_2(10 \text{ mol}\%)$	4 Å MS	THF	82	-
8.	$Pd(OAc)_2(10 \text{ mol}\%)$	4 Å MS	MeCN	5°	-
9.	$Pd(OAc)_2(10 \text{ mol}\%)$	4 Å MS	DMSO	43°	-
10.	$Pd(OAc)_2(10 \text{ mol}\%)$	4 Å MS	Dioxane	56	-
11.	$Pd(OAc)_2(10 \text{ mol}\%)$	4 Å MS	DCE	45°	-
12.	$Pd(OAc)_2(10 \text{ mol}\%)$	4 Å MS	DMF	0	-
13.	$Pd(OAc)_2(7.5 mol\%)$	4 Å MS	THF	86	-
14.	$Pd(OAc)_2(5 mol\%)$	4 Å MS	THF	75	-
15.	-	4 Å MS	THF	$0^{\rm c}$	-

^aReaction Condition: 2-azidobenzaldehyde (0.10 mmol), isocyanide (0.12 mmol), tosylhydrazide, catalyst, solvent (1 ml) at room temperature. ^bIsolated yield after column chromatography. ^C**1a** recovered.

S2.2. Experimental procedure for the synthesis of azomethine imine 4

To a 10 mL reaction vial was charged with 2-azidobenzaldehyde **1** (1.0 equiv), *tert*-butylisocyanide **2** (1.2 equiv), $Pd(OAc)_2$ (7.5 mol %,), 4 Å MS and aryl sulfonyl hydrazide **3** (1.1 equiv.) in toluene at

room temperature. After stirring for 30 min at room temperature, starting material was completely disappeared and a yellow suspension was obtained. The suspension was then quenched by water and extracted with EtOAc (3x15ml). After removal of solvents in vacuo, the residue was subjected to column chromatography on silica gel (100-200 mesh) using 20:80 EtOAc and hexane as eluent to give desired product 4.

S2.3. Analytical data of compound 4

4a. (2-(tert-butylamino)quinazolin-3-ium-3-yl)(tosyl)amide

Prepared by following experimental procedure S2.2. Yellow solid, Yield: 0.214 g (85%); $R_f = 0.4$ (EtOAc/hexanes: 20/80 ¹H NMR (δ ppm): (500 MHz, CDCl₃), 9.39 (s, 1H), 7.85 (t, 1H, *J* = 7.5 Hz), 7.77 (d, 1H, *J* = 5 Hz), 7.60 (d, 1H, J = 5 Hz) 7.53 (d, 2H, J = 5 Hz), 7.39 (t, 1H, J = 10 Hz), 7.20 (s, 1H), 7.17 (d, 2H, J = 5 Hz), 2.35 (s, 3H), 1.18 (s, 9H). ¹³C{¹H} NMR (δ ppm): (125 MHz, CDCl₃), 154.8, 150.3, 148.2, 141.7, 141.1, 137.9, 129.6, 128.7, 126.1, 126.0, 124.9, 117.2, 52.2, 27.6, 21.3. **HRMS** (EI) calcd for C₁₉H₂₃N₄O₂S (M+H⁺) 371.1536, found 371.1529

4b. (2-(tert-butylamino)-7-chloroquinazolin-3-ium-3-yl)(tosyl)amide

Prepared by following experimental procedure S2.2. Yellow solid, Yield: 0.178 g (73%); $R_f = 0.4$ (EtOAc/hexanes: 20/80); ¹H NMR (δ ppm): (500 MHz, CDCl₃), 9.40 (s, 1H), 7.73 (d, 1H, *J* = 7.5 Hz), 7.64 (s, 1H), 7.55 (d, 2H, J = 8.7 Hz) 7.36-7.34 (m, 2H), 7.20 (d, 2H, J = 8.0 Hz), 2.38 (s,

3H), 1.20 (s, 9H). ¹³C{¹H} NMR (δ ppm): (125 MHz, CDCl₃), 154.3, 150.4, 148.5, 144.8, 141.8, 129.8, 129.6, 128.6, 126.3, 126.1, 125.3, 115.5, 52.4, 27.5, 21.3; HRMS (EI) calcd for C₁₉H₂₂ClN₄O₂S (M+H⁺) 405.1147, found 405.1149.

4c. (7-bromo-2-(tert-butylamino)quinazolin-3-ium-3-yl)(tosyl)amide

Prepared by following experimental procedure S2.2. Yield: 0.156 g (79%); $R_f = 0.4$ (EtOAc/hexanes: 20/80); ¹H NMR (δ ppm): (500 MHz, $CDCl_3$), 9.40 (s, 1H), 7.84 (s, 1H), 7.65 (d, 1H, J = 8.7 Hz), 7.55 (d, 2H, J = 8.2 Hz) 7.49 (dd, 1H, J = 1.5, 8.7 Hz), 7.35 (br s, 1H), 7.20 (d, 2H, J

= 8.0 Hz, 2.38 (s, 3H), 1.20 (s, 9H). ¹³C{¹H} NMR (δ ppm): (125 MHz, CDCl₃), 154.4, 150.2, 148.7, 141.8, 140.9, 133.8, 129.6, 129.5, 128.9, 128.6, 126.1, 115.7, 52.5, 27.5, 21.3. HRMS (EI) calcd for C₁₉H₂₂BrN₄O₂S (M+H⁺) 449.0642 found 449.0631.

4d. tosyl(2-((2,4,4-trimethylpentan-2-yl)amino)quinazolin-3-ium-3-yl)amide

Prepared by following experimental procedure **S2.2**.Yellow solid, Yield: 0.252 g (86%); $R_f = 0.4$ (EtOAc/hexanes: 20/80); ¹H NMR (δ ppm): (500 MHz, CDCl₃), 10.15 (s, 1H), 7.79 (d, 1H, J = 10 Hz), 7.22 (d, 2H, J = 10 Hz), 6.69 (d, 2H, J = 10 Hz), 6.64 (t, 1H, J = 10 Hz), 6.43 (d, 1H, J = 7 Hz) 6.27 (t,

1H, J = 10 Hz), 4.47 (s, 1H), 1.79 (s, 3H), 1.28 (s, 2H,), 0.90 (s, 6H), 0.47 (s, 9H). ¹³C{¹H} NMR (δ **ppm**): (125 MHz, CDCl₃), 154.4, 149.1, 144.6, 140.3, 135.5, 131.8, 131.2, 130.0, 127.3, 120.5, 118.6, 117.7, 54.7, 51.4, 31.6, 31.4, 30.0, 21.6. HRMS (EI) calcd for C₂₃H₃₁N₄O₂S (M+H⁺) 427.2162 found 427.2155.

4e. (2-(tert-butylamino)quinazolin-3-ium-3-yl)(phenylsulfonyl)amide

Prepared by following experimental procedure **S2.2**. Yield: 0.176 g (73%); $R_f = 0.3$ (EtOAc/hexanes: 20/80); ¹**H NMR (\delta ppm)**: (500 MHz, CDCl₃), 9.41 (s, 1H), 7.87 (t, 1H, J = 7.6 Hz), 7.80 (d, 1H, J = 8.1 Hz), 7.67 (d, 2H, J = 7.4 Hz), 7.62 (d, 1H, J = 8.5 Hz) 7.47 (t, 1H, J = 7.4 Hz), 7.40 (t, 3H, J = 7.5 Hz), 7.19

(br s, 1H), 1.18 (s, 9H). ¹³C{¹H} NMR (δ ppm): (125 MHz, CDCl₃), 154.9, 150.4, 148.2, 144.1, 138.1, 131.2, 129.1, 128.8, 128.6, 126.1, 125.1, 117.2, 52.2, 27.6. HRMS (EI) calcd for C₁₈H₂₁N₄O₂S (M+H⁺) 357.138 found 357.1357.

4f. (2-(*tert*-butylamino)quinazolin-3-ium-3-yl)((4-chlorophenyl)sulfonyl)amide (4h)

Prepared by following experimental procedure **S2.2**. Yield: 0.199 g (75%); $R_f = 0.4$ (EtOAc/hexanes: 20/80); ¹**H NMR (\delta ppm)**: (500 MHz, CDCl₃), 9.39 (s, 1H), 7.89 (t, 1H, J = 8.3 Hz), 7.82 (d, 1H, J = 8.7 Hz), 7.63-7.59 (m, 2H, J = 8.6 Hz), 7.46 (d, 1H, J = 8.2 Hz), 7.41 (t, 1H, J = 8.2 Hz) 7.37 (d,

2H, J = 8.2 Hz), 7.13 (br, s, 1H), 1.23 (s, 9H). ¹³C{¹H} NMR (δ ppm): (125 MHz, CDCl₃), 155.1, 150.6, 148.1, 142.5, 138.3, 137.5, 129.2, 128.9, 127.6, 126.1, 125.2, 117.2, 52.4, 27.7. HRMS (EI) calcd for C₁₈H₂₀ClN₄O₂S (M+H⁺) 391.099 found 391.0975.

4g. (2-(tert-butylamino)quinazolin-3-ium-3-yl)((4-iodophenyl)sulfonyl)amide

Prepared by following experimental procedure **S2.2**. Yield: 0.206 g (70%); $R_f = 0.4$ (EtOAc/hexanes: 20/80); ¹**H NMR (\delta ppm)**: (500 MHz, CDCl₃), 9.39 (s, 1H), 7.88 (t, 1H, J = 8.3 Hz), 7.82 (d, 2H, J = 8.7 Hz), 7.63 (d, 2H, J = 8.6 Hz), 7.52 (s, 2H), 7.42 (t, 1H, J = 8.2 Hz), 7.11 (br, s, 1H), 1.22 (s,

9H). ¹³C{¹H} NMR (δ ppm): (125 MHz, CDCl₃), 155.1, 150.6, 148.0, 143.0, 138.3, 132.2, 128.9, 127.8, 126.1, 125.9, 125.2, 117.2, 52.4, 27.7. HRMS (EI) calcd for C₁₈H₂₀BrN₄O₂S (M+H⁺) 435.0485 found 435.0464.

4h. (2-(tert-butylamino)quinazolin-3-ium-3-yl)((4-nitrophenyl)sulfonyl)amide

Prepared by following experimental procedure **S2.2**. Yield: 0.177 g (65%); R_f = 0.4 (EtOAc/hexanes: 20/80); ¹**H NMR (δ ppm):** (500 MHz, CDCl3), 9.39 (s, 1H), 8.27 (d, 2H, *J* = 8.7 Hz), 7.94 (t, 1H, *J* = 8.3 Hz), 7.87 (d, 2H, *J* = 8.6 Hz), 7.83 (d, 1H, *J* = 8.2 Hz), 7.68 (d, 1H, *J* = 8.5 Hz), 7.47 (t, 1H,

J = 8.2 Hz), 7.09 (br s, 1H), 1.20 (s, 9H). **13C{1H} NMR (δ ppm):** (125 MHz, CDCl₃), 154.7, 150.7, 150.1, 149.2, 147.9, 138.6, 128.8, 127.3, 126.3, 125.5, 125.2, 117.2, 54.5, 27.8. **HRMS** (EI) calcd for C₁₈H₂₀N₅O₄S (M+H⁺) 402.1231 found 402.1237

4i. (2-(tert-butylamino)quinazolin-3-ium-3-yl)(naphthalen-1-ylsulfonyl)amide

Prepared by following experimental procedure **S2.2**. Yield: 0.207 g (75%); R_f = 0.4 (EtOAc/hexanes: 20/80); ¹H NMR (δ ppm): (500 MHz, CDCl₃), 9.44 (s, 1H), 9.10 (d, 1H, J = 8.6 Hz), 7.95 (d, 2H, J = 8.2 Hz), 7.85 (d, 2H, J = 7.3 Hz), 7.80 (d, 1H, J = 8.2 Hz), 7.70 (t, 1H, J = 7.15 Hz), 7.61 (t, 1H, J =

7.2 Hz), 7.56 (d, 1H, J = 8.7 Hz), 7.40 (t, 1H, J = 7.3 Hz), 7.34 (t, 1H, J = 7.9 Hz), 6.87 (s, 1H), 0.72 (s, 9H). ¹³C{¹H} NMR (δ ppm): (125 MHz, CDCl₃), 155.3, 150.4, 148.2, 138.9, 137.9, 134.5, 132.5, 128.9, 128.7, 128.5, 128.3, 127.5, 126.7, 126.0, 125.7, 124.9, 124.2, 117.1, 51.9, 27.1. HRMS (EI) calcd for C₂₂H₂₃N₄O₂S (M+H⁺) 407.1536 found 407.1523.

4j. (2-(tert-butylamino)quinazolin-3-ium-3-yl)(thiophen-2-ylsulfonyl)amide

Prepared by following experimental procedure **S2.2**. Yellow solid, Yield: 0.192 g (78%); $R_f = 0.5$ (EtOAc/hexanes: 20/80); ¹H NMR (δ ppm): (500 MHz, CDCl₃), 9.37 (s, 1H), 7.87 (t, J = 1.5 Hz), 7.77 (d, 1H J = 10 Hz), 7.62 (d, 1H, J = 5 Hz), 7.41-7.38 (m, 2H), 7.27-7.26 (m, 2H), 6.97-6.95 (m, 1H), 1.29 (s,

9H,). ¹³C{¹H} NMR (δ ppm): (125 MHz, CDCl₃), 154.7, 150.6, 148.2, 145.4, 138.2, 130.5, 129.3, 128.8, 127.3, 126.1, 125.1, 117.1, 52.4, 27.8. HRMS (EI) calcd for C₁₆H₁₉N₄O₂S₂ (M+H⁺) 363.0944 found 363.0954.

S2.4. Crytallographic data of compound 4f

Colourless crystals of compounds **4f** were grown by slow evaporation of mixed solvents of petroleum ether and dichloromethane at room temperature. The determination of unit cell and intensity data collection was performed using a Xcalibur, Atlas diffractometer at 293(2) K. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm was performed with CrysAlisPro 1.171.38.46 (Rigaku Oxford Diffraction, 2015). Structure was solved with the SHELXT (Sheldrick, 2015) and refined with the SHELXL (Sheldrick, 2015). Crystallographic data (excluding structure factors) for the structures in this manuscript have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC 1894385 (for **4f**).

This data can be obtained free of charge from the Cambrige Crystallographic Data Centers via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

Figure 1. The X-ray crystal structure of compound **4f** showing with ORTEP diagram using 50% ellipsoidal plot.

Identification Code	CCDC No. 1895385
Emperical formula	$C_{18}H_{19}ClN_4O_2S$
Formula Weight	390.88
Crystal System	triclinic
Space group	P -1
a/Å	7.6748(4)
b/Å	9.3670(4)
c/Å	13.8037(6)
α/ο	84.937(4)
β/º	89.503(4)
γ/º	80.948(4)
V	976.15(8) Å ³
Temperature	293(2) K

Structure refinement for 4f

Z	2
μ	0.29 mm^{-1}
F(000)	408.0
Dc	1.330 Mg m^{-1}
Crystal size	0.30 x 0.25 x 0.15 mm
Reflections	8061
measured	
Unique	3621
R1	0.0454 for 3479 $F_o > 4\sigma(F_o)$ and 0.0631
	for all 4530 data and 242 parameters

Unit cell determination and intensity data collection was performed with 83 % completeness at 293 (2) K. Structure solutions by direct methods and refinements by full-matrix least-squares methods on F₂

S3. Synthesis of Compound 6

3.1. Experimental procedure for the synthesis of β -aryl nitroalkenes 5:

To a 50 mL round-bottomed flask equipped with a condenser was charged aryl aldehyde (10 mmol), ammonium acetate (13 mmol) and 1-nitroethane (30 mL). The mixture was stirred and refluxed at 120 °C for 2 hours and then concentrated. The residue was re-dissolved in CH₂Cl₂ (50 mL), washed sequentially with brine and water (50 ml), dried over Na₂SO₄. The crude product was purified *via* SiO₂ flash chromatography, using 0 - 5% ethyl acetate in pet ether as eluent, to afford β -aryl nitroalkenes. (Yields: 80–95%).

S3.2. Screening of 4-CR for the synthesis of 6^{*a*}

Initially, we started a reaction with azomethine amine and nitro olefins in toluene catalytic amount of palladium acetate at 120 °C pleasingly we found the desired product in 90 % yield. In the absence of catalyst reaction well proceed without decreasing the yield. Further, we screened different solvents such as THF, DCE, DMSO, dioxane, and toluene. The highest yield of **6** was obtained in toluene which concluded that toluene was the best optimal solvent for this reaction.

^aAll reaction was carried out using 1.0 mmol 2-azidoaldehyde, 1.2 mmol *tert*-butyl isocyanide, 1.0 mmol tosylhydrazide and 0.65 mmol nitro olefins using standard schlenk techniques. the ^bIsolated yield of **6**.

S3.3. Experimental procedure for *sequential* synthesis of 6 (Method A):

In a 20 mL Schlenk tube Azomethine imine (1.0 equiv.) 4 and nitro olefin (0.65 equiv) was dissolved in toluene and reaction was stirred at 120 °C for 2 h. The reaction mixture was diluted with ethyl acetate (15 mL) and extracted with water, organic layer evaporated under vaccum. The crude product was purified by column chromatography to afford the desired product 6.

3.4. Experimental procedure for *one-pot* synthesis of 6 (Method B):

2-Azidobenzaldehyde (1.0 equiv), isocyanide (1.2 equiv), Pd(OAc)₂(7.5 mol %), 4Å MS, Aryl sulfonyl hydrazide (1.1 equiv.), and nitro olefin (0.65 equiv.) toluene were added to a 20 mL Schlenk tube. The formed mixture was stirred at 120 °C for 2 h. The reaction mixture was diluted with ethyl acetate (15 mL) and extracted with water, organic layer evaporated under vaccum. The crude product was purified by column chromatography to afford the desired product 6.

S3.5. Analytical data of compound 6

6a. N-(tert-butyl)-1-methyl-1-nitro-2-phenyl-3-tosyl-1,2,3,10b-tetrahydropyrazolo[1,5c]quinazolin-5-amine

Yellow solid, Yield: (Method A: 0.14g, 82%, Method B: 012 g, 71%) m.p.: 168–170 °C, ¹H NMR (δ ppm): (500 MHz, CDCl₃),7.98 (d, 1H, J = 8.2 Hz), 7.45(d, 2H, J = 8.05 Hz), 7.42-7.38 (m, 3H), 7.37-7.32 (m, 2H), 7.19 (t, 1H, J = 7.2 Hz), 7.04 (d, 1H, J = 7.4 Hz), 6.77(t, 1H, J = 7.3 Hz), 6.34 (d, 1H, J =6.8 Hz), 5.89 (br s, 1H), 5.73 (s, 1H), 4.19 (s, 1H), 2.50 (s, 3H), 1.56 (s, 9H),

0.79 (s, 3H); ¹³C{1H}-NMR (125 MHz, CDCl₃): 149.5, 146.4, 142.4, 134.8, 130.3, 129.9, 129.7, 128.9, 128.8, 127.3, 125.2, 124.1, 121.9, 115.8, 114.1, 98.4, 71.9, 68.0, 52.1, 29.1, 21.8, 14.2. HRMS (EI) calcd for C₂₈H₃₂N₅O₄S (M+H⁺) 534.217, found 534.2157.

6b.

N-(tert-butyl)-2-(4-chlorophenyl)-1-methyl-1-nitro-3-tosyl-1,2,3,10-btetrahydropyrazolo[1,5-c]quinazolin-5-amine

Reddish Yellow solid, Yield: (Method A: 0.14 g, 77 %, Method B: 0.12 g 63%) m. p. 165–168 °C; ¹H **NMR** (δ ppm): (500 MHz, CDCl₃), 7.97 (d, 2H, *J* = 8.2 Hz), 7.46 (d, 2H, *J* = 8.0 Hz), 7.41 (d, 2H, *J*

= 8.7 Hz), 7.30 (d, 2H, J = 7.7 Hz), 7.23 (dt, 1H, J = 1.3, 8.7 Hz), 7.05 (d, 1H, J = 7.8 Hz), 6.79 (dt, 1H, J = 6.5, 7.4 Hz), 6.35 (d,1H, J = 6.6 Hz), 5.81 (s, 1H), 5.69 (s, 1H), 4.18 (s, 1H), 2.51 (s, 3H), 1.55 (s, 9H), 0.807 (s, 3H); ¹³C{1H}-NMR (125 MHz, CDCl₃):149.3, 146.6, 142.3, 134.9, 133.4, 130.4, 130.3, 129.7, 129.7, 129.2, 128.8, 125.2, 124.2, 122.1, 115.7, 98.2, 71.2, 68.0, 52.1, 29.1, 21.9, 14.3. HRMS (EI) calcd for C₂₈H₃₁ClN₅O₄S (M+H⁺) 568.178 found 568.1768

6c. 2-(4-bromophenyl)-N-(*tert*-butyl)-1-methyl-1-nitro-3-tosyl-1,2,3,10b-tetrahydropyrazolo[1,5-c]quinazolin-5-amine

Yellow Solid, Yield: (Method A: 0.18 g, 90%, Method B, 0.17, 83%); m.p. = 164-166 °C; ¹H NMR (δ ppm): (500 MHz, CDCl₃), 7.6 (d, 2H, J = 7.8 Hz), 7.56 (d, 2H, J = 8.1 Hz), 7.46 (d, 2H, J = 7.9 Hz), 7.26-7.19 (m, 3H), 7.05 (d,1H, J = 7.9 Hz), 6.79 (t, 1H, J = 7.4 Hz), 6.35 (d,1H, J = 7.6 Hz), 5.80 (s, 1H), 5.67 (s, 1H), 4.17 (s, 1H), 2.51 (s, 3H), 1.54 (s, 9H), 0.805 (s, 3H); ¹³C{1H}-NMR (125 MHz, CDCl₃): 149.3, 146.6, 142.3, 133.9, 132.2, 130.4,

130.3, 129.7, 129.7, 129.1, 125.2, 124.2, 123.1, 122.1, 115.7, 98.2, 71.3, 68.0, 52.1, 29.2, 14.3. **HRMS** (EI) calcd for $C_{28}H_{31}BrN_5O_4S$ (M+H⁺) 612.1275 found 612.1265.

6d. N-(*tert*-butyl)-1-methyl-1-nitro-2-(p-tolyl)-3-tosyl-1,2,3,10b-tetrahydropyrazolo[1,5c]quinazolin-5-amine

Yellow Solid, Yield (Method A: 0.113 g 61%, Method B: 0.093 g 50%); m.p.= 170-172 °C; ¹H NMR (δ ppm): (500 MHz, CDCl₃), 7.98 (d, 2H, J = 8.3 Hz), 7.45 (d, 2H, J = 8.1 Hz), 7.21-7.18 (m, 5H), 7.04 (d, 1H, J = 7.7 Hz), 6.77 (dt, 1H, J = 1, 7.5 Hz), 6.34 (d, 1H, J = 7.5 Hz), 5.86 (s, 1H), 5.69 (s, 1H), 4.19 (s, 1H), 2.51 (s, 3H), 2.36 (s, 3H), 1.55 (s, 9H), 0.85 (s, 3H); ¹³C{1H}-NMR (125)

MHz, CDCl₃): 149.5, 146.3, 138.7, 131.8, 130.2, 129.7, 129.6, 129.0, 128.8, 127.3, 125.9, 125.2, 124.1, 122.5, 122.4, 98.4, 71.8, 67.9, 51.8, 29.1, 21.8, 21.1, 14.2. **HRMS** (EI) calcd for $C_{29}H_{34}N_5O_4S$ (M+H⁺) 548.2326 found 548.2315.

6e. N-(*tert*-butyl)-3-((4-methoxyphenyl)sulfonyl)-1-methyl-1-nitro-2-phenyl-1,2,3,10b-tetrahydropyrazolo[1,5-c]quinazolin-5-amine

Yellow Solid, Yield (Method A: 0.137 g 72%, method B: 0.128 g 67%); m.p.=171-173°C; ¹H NMR (δ ppm): (500 MHz, CDCl₃), 7.97 (d, 2H, J = 8.1 Hz), 7.45 (d, 2H, J = 8.05 Hz), 7.24 (s, 2H), 7.19 (t, 1H, J = 7.5 Hz), 7.04 (d, 1H, J = 7.9 Hz), 6.93 (d, 2H, J = 8.7 Hz), 6.77 (t, 1H, J = 7.45 Hz), 6.34 (d, 1H, J = 7.4 Hz), 5.85 (s, 1H), 5.66 (s, 1H), 4.19 (s, 1H), 3.82 (s, 3H), 2.50 (s, 3H), 1.55 (s, 9H), 0.81 (s, 3H); ¹³C{1H}-NMR (125 MHz, CDCl₃): 159.9, 149.5, 146.4, 142.4, 130.2, 129.9, 129.7, 128.7, 126.7, 125.2, 124.1, 121.9, 115.9, 114.3, 98.4, 71.7, 67.9, 55.3, 52.0, 29.2, 21.9, 14.2. **HRMS** (EI) calcd for $C_{29}H_{34}N_5O_5S$ (M+H⁺): 564.2275 found 564.2263

6f. N-(*tert*-butyl)-1-methyl-1-nitro-2-(thiophen-2-yl)-3-tosyl-1,2,3,10 b-tetrahydropyrazolo[1,5-c]quinazolin-5-amine

Yellow Solid, Yield (Method A: 0124 g 68%, Method B: 0.102 g 56%); m.p.=170-177°C; ¹H NMR (δ ppm): (500 MHz, CDCl₃), 7.97 (d, 2H, J = 7.7 Hz), 7.44 (d, 2H, J = 7.2 Hz), 7.36 (d, 1H, J = 4.4 Hz), 7.21 (s, 1H), 7.04 (d, 2H, J = 3.8 Hz), 6.97(s, 1H), 6.77 (s, 1H), 6.40 (d, 1H, J = 6.6 Hz), 6.01 (s, 1H), 5.67 (s, 1H), 4.29 (s, 1H), 2.50 (s, 3H), 1.51 (s, 9H), 0.98 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃):149.1, 146.5, 142.6, 138.4, 130.3, 129.8,

127.7, 126.6, 126.3, 125.4, 124.0, 122.6, 121.9, 120.2, 115.8, 98.2, 67.9, 67.8, 52.0, 28.9, 21.9, 13.9. **HRMS** (EI) calcd for $C_{26}H_{30}N_5O_4S_2$ (M+H⁺): 540.1734 found 540.1741

6g. N-(*tert*-butyl)-2-cyclohexyl-1-methyl-1-nitro-3-tosyl-1,2,3,10 b-tetrahydropyrazolo[1,5-c]quinazolin-5-amine

Off white solid, Yield (Method A: 0.125 g, 69%, Method B: 0.115, 63%); m.p.=136-139 °C; ¹**H NMR** (δ ppm): (500 MHz, CDCl₃), 7.91 (d, 2H, *J* = 8.05 Hz), 7.37 (d, 2H, *J* = 8 Hz), 7.22 (q, 2H, *J* = 7.4 Hz), 7.01 (d, 1H, *J* = 7.8 Hz), 6.80 (t, 1H, *J* = 7.3 Hz), 6.36 (d, 1H, *J* = 7.4 Hz), 5.28 (s, 1H), 4.53 (d, 1H, *J* = 9.4 Hz), 4.25 (s, 1H), 3.16 (s, 2H), 2.45 (s, 3H), 1.96 (d, 2H), 1.73 (s, 2H),

1.35 (s, 9H), 1.25 (s, 4H), 0.88-0.84 (m, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): 149.2, 145.8, 142.8, 130.2, 129.9, 129.8, 125.9, 125.6, 123.9, 121.9, 116.6, 98.2, 72.4, 69.2, 51.5, 46.1, 40.1, 31.3, 28.9, 26.0, 21.8, 13.9 HRMS (EI) calcd for C₂₈H₃₈N₅O₄S (M+H⁺): 540.2639 found 540.2634

6h. N-(*tert*-butyl)-2-(3-methoxyphenyl)-1-methyl-1-nitro-3-tosyl-1,2,3,10b-tetrahydropyrazolo [1,5-c]quinazolin-5-amine

Yield (Method A: 0.127 g, 67%, Method B: 0.116, 61%); m.p. = 178-183°C; ¹H NMR (δ ppm): (500 MHz, CDCl₃), 7.99 (d, 2H, J = 7.5 Hz), 7.49 (d, 2H, J = 7.1 Hz), 7.39-7.31 (m, 3H), 6.91-6.85 (m, 4H), 6.36 (d, 1H, J = 7.15 Hz), 5.70 (s, 1H), 4.98 (s, 1H), 4.25 (s, 1H), 3.83 (s, 3H), 2.52 (s, 3H), 1.62 (s, 9H), 0.81(s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): 160.0, 149.5,

146.4, 136.3, 130.2, 130.0, 129.9, 129.7, 128.8, 126.0, 125.2, 124.1, 121.9, 11.5, 115.8, 113.9, 113.5, 98.4, 71.8, 68.1, 55.3, 52.1, 29.9, 14.0. **HRMS (EI)** calcd for C₂₉H₃₄N₅O₅S (M+H+): 564.2275 found 564.2276

6i. N-(*tert*-butyl)-1-methyl-3-(naphthalen-1-ylsulfonyl)-1-nitro-2-phenyl-1,2,3,10b-tetrahydropyrazolo[1,5-c]quinazolin-5-amine

Yellow Solid, Yield (Method A: 0.124 g, 64%, Method B: 0.113 g, 57%, m.p.=137-142°C; ¹H NMR (δ ppm): (500 MHz, CDCl₃), 8.66 (d, 2H, *J* = 8.55 Hz), 8.48 (d, 1H, *J* = 7.3 Hz), 8.24 (d, 1H, *J* = 8.2 Hz), 8.00 (d, 1H, *J* = 8.0 Hz), 7.67-7.61 (m, 2H), 7.58 (t, 1H, *J* = 7.7 Hz), 7.42 (d, 3H, *J* = 5.8 Hz), 7.35 (d, 1H, *J* = 7.7 Hz), 7.20 (t, 1H, *J* = 7.8 Hz), 6.97 (d, 1H, *J* = 7.9 Hz), 6.82 (d,

1H, J = 7.3Hz), 6.58 (d, 1H, J = 7.5 Hz), 6.19 (s, 1H), 5.18 (s, 1H), 4.77 (s, 1H), 1.07 (s, 9H), 0.86 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): 148.5, 142.3, 136.5, 134.5, 134.4, 133.8, 130.1, 129.4, 129.3, 129.2, 129.1, 128.9, 128.8, 128.0, 127.6, 125.7, 124.7, 124.6, 123.9, 122.0, 116.3, 98.0, 70.2, 68.7, 51.4, 28.5, 14.5. HRMS (EI) calcd for C₃₁H₃₂N₅O₄S (M+H⁺): 570.2170, found 570.2160

6j. 2-(4-bromophenyl)-N-(*tert*-butyl)-1-nitro-3-tosyl-1,2,3,10b-tetrahydropyrazolo[1,5c]quinazolin-5-amine

Yield (Method A: 0.140 g, 69%, Method B: 0.103, 51%); m.p. = 132-135°C; ¹H NMR (δ ppm): (500 MHz, CDCl₃), 7.95 (d, 2H, J = 8.1 Hz), 7.55 (d, 2H, J = 8.3 Hz), 7.45 (d, 2H, J = 8.0 Hz), 7.30 (d, 2H, J = 8.3 Hz), 7.25(t, 1H, J = 7.3 Hz), 7.07 (d, 1H, J = 7.8 Hz), 6.83 (t, 1H, J = 7.4 Hz), 6.54 (d, 1H, J = 7.3 Hz), 5.50 (d, 1H, J = 7.5), 5.42 (s, 1H), 4.96 (s, 1H), 4.09 (d, 1H, J = 9.4 Hz), 2.51 (s, 3H), 1.41 (s, 9H); ¹³C{¹H} NMR (125 MHz, CDCl3): 148.3,

146.5, 140.9, 135.9, 132.4, 130.8, 130.6, 130.4, 129.4, 128.9, 125.5, 124.3, 123.4, 122.2, 116.7, 96.7, 67.1, 64.9, 52.0, 28.9, 21.8. **HRMS** (EI) calcd for C₂₇H₂₉BrN₅O₄S (M+H⁺): 598.1118 Found 598.1130.

6k. N-(*tert*-butyl)-1-methyl-1-nitro-2-phenyl-3-(phenylsulfonyl)-1,2,3,10b-tetrahydropyrazolo [1,5-c]quinazolin-5-amine

Yield (Method A: 0.139 g, 79%, Method B: 0.118 g, 67%) m.p.=170-175 °C; ¹H NMR (δ ppm): (500 MHz, CDCl₃), 8.12 (d, 2H, J = 7.5 Hz), 7.82 (t, 1H, J= 7.4 Hz), 7.69 (t, 2H, J = 7.7 Hz), 7.43-7.35 (m, 5H), 7.22 (t, 1H, J = 7.4 Hz), 7.04 (d, 1H, J = 7.9 Hz), 6.77 (t, 1H, J = 7.4 Hz), 6.31 (d, 1H, J = 7.35), 5.87 (s, 1H), 5.74 (s, 1H), 4.11 (s, 1H), 1.57 (s,9H), 0.79 (s, 3H); ¹³C{¹H} NMR (125

MHz, CDCl₃): 149.3, 142.3, 138.2, 135.1, 134.7, 132.8, 130.4, 129.7, 128.9, 127.3, 125.2, 124.1, 122.1, 116.4, 115.8, 98.4, 72.0, 68.1, 52.1, 29.1, 14.2. **HRMS** (EI) calcd for C₂₇H₃₀N₅O₄S (M+H⁺): 520.2013 Found 520.2004.

6l N-(*tert*-butyl)-3-((4-iodophenyl)sulfonyl)-1-methyl-1-nitro-2-phenyl-1,2,3,10b tetrahydropyrazolo [1,5-c]quinazolin-5-amine

Yield (Method A: 0.142 g, 65%, Method B: 0.120 g, 55%); m.p.=173°C; ¹H NMR (δ ppm): (500 MHz, CDCl₃), 8.04 (d, 2H, *J* = 8.4 Hz), 7.81 (d, 2H, *J* = 8.5 Hz), 7.45-7.36 (m, 4H), 7.32 (d, 2H, *J* = 6.6 Hz), 7.25 (t, 1H, *J* = 8.2 Hz), 7.12 (d, 1H, *J* = 7.6 Hz), 6.84 (t, 1H, *J* = 7.3 Hz), 6.40 (d, 1H, *J* = 7.5 Hz), 5.91 (s, 1H), 5.73 (s, 1H), 4.24 (s, 1H), 1.58 (s, 9H), 0.80 (s, 3H);

¹³C{¹H} NMR (125 MHz, CDCl₃):149.2, 139.1, 134.4, 132.5, 130.8, 130.6, 129.2, 129.1, 129.0, 127.3, 125.2, 123.9, 122.5, 115.4, 103.6, 98.3, 72.2, 68.3, 52.5, 29.1, 14.2. HRMS (EI) calcd for C₂₇H₂₉IN₅O₄S (M+H⁺):646.098, found 646.0902.

6m. N-(*tert*-butyl)-3-((4-chlorophenyl)sulfonyl)-1-methyl-1-nitro-2phenyl-1,2,3,10btetrahydropyrazolo [1,5-c] quinazolin-5-amine

Yellow Solid, Yield (Method A: 0.131 g, 70 %, Method B: 0.107 g, 57%); m.p.=177-181°C; ¹H NMR (δ ppm): (500 MHz, CDCl₃), 8.05 (d, 2H, *J* = 8.5 Hz), 7.65 (d, 2H, *J* = 8.5 Hz), 7.44-7.36 (m, 3H), 7.33 (d, 2H, *J* = 5.7 Hz), 7.24 (t, 1H, *J* = 7.3 Hz), 7.05 (d, 1H, *J* = 7.8 Hz), 6.81 (t, 1H, *J* = 7.3 Hz), 6.37 (d, 1H, *J* = 7.3 Hz), 5.84 (s, 1H), 5.72 (s, 1H), 4.2 (s, 1H), 1.57

(s, 9H), .80 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): 149.1, 142.2, 142.1, 134.5, 131.4, 131.1, 130.5, 130.0, 129.0, 127.3, 125.2, 124.2, 122.3, 115.6, 112.9, 98.5, 72.2, 68.4, 52.2, 29.1, 22.7, 14.1. HRMS (EI) calcd for C₂₇H₂₉ClN₅O₄S (M+H⁺): 554.1624 Found 554.1618.

3.6. Crystallographic Data

X-ray quality crystals of **6c** were grown by slow evaporation method by mixing of hexane and DCM at room temperature. Suitable crystals for single crystal X-ray diffractions were loaded on a Bruker AXS Smart Apex CCD diffractometer. All the structures were solved by direct methods using SHELXS-97 and refined by full-matrix least squares on F2 using SHELXL-97 and OLEX². The details pertaining to the data collection and refinement for 6c are given in Table S3.6. Non-hydrogen atoms were refined with anisotropic displacement parameters. All the hydrogen atoms were included in idealized positions and their positions were refined isotropically by a riding model.

Figure S2: Ortep diagram of 6c drawn at 50% probability. The hydrogen atoms have been omitted for clarity.

Identification code	MCR_A122_030_07_07_2017_0m
Empirical formula	$C_{28}H_{30}BrN_5O_4S$
Formula weight	612.53
Temperature/K	296.15
Crystal system	triclinic
Space group	P-1
a/Å	11.1312(14)
b/Å	12.9663(17)
c/Å	19.980(3)
α/°	82.601(2)
β/°	89.156(2)
γ/°	78.132(2)
Volume/Å ³	2798.4(6)
Z	4
ρ _{calc} g/cm ³	1.454
μ/mm ⁻¹	1.587
F(000)	1264.0
Crystal size/mm ³	0.18 imes 0.18 imes 0.16
Radiation	MoKα (λ = 0.71073)
20 range for data collection/°	2.06 to 57.42
Index ranges	$-14 \le h \le 14, -16 \le k \le 17, -26 \le l \le 23$
Reflections collected	21705

Independent reflections $12453 \ [R_{int} = 0.0356, R_{sigma} = 0.0568]$ Data/restraints/parameters12453/0/714Goodness-of-fit on F²1.073Final R indexes [I>=2 σ (I)] $R_1 = 0.0684, wR_2 = 0.1785$ Final R indexes [all data] $R_1 = 0.0908, wR_2 = 0.2357$ Largest diff. peak/hole / e
Å-32.59/-1.40

4. Synthesis of compound 8

Table S4.1 Optimization of 4-CR for the synthesis of compound 8^a

	CN_{2} + =C= TS_N, NH ₂ H 3	Conditions	
--	---	------------	--

Entry	Solvent	Base	temp (° C)	Time (h)	8
1.	toluene	-	rt	24	10^{a}
2.	toluene	-	100	4	55
3.	THF	-	70	4	-
4.	ⁱ PrOH	-	70	4	40
5.	1,2-DCE	-	100	4	25
6.	DMF	-	100	4	-
7.	Dioxane	-	100	4	30
8.	DMF	-	rt	24	-
9.	DMF	Et ₃ N	70	4	20
10.	DMF	NMP	70	4	15
11.	DMF	DBU	70	4	-
12.	DMF	pyrolidine	100	4	10
13.	DMF	DABCO	rt	24	50
14.	DMF	DABCO	100	4	57
15.	toluene	DABCO	rt	24	65
16.	toluene	DABCO	100	4	80
17.	toluene	DABCO	rt	4	15

^bReaction carried for overnight

S4.2. Experimental procedure for the *sequential* synthesis of 8 (Method C)

To a reaction vial (10ml) was charged with azomethine imine **4** (1.0 equiv) allenoates **7** (2 equiv) in toluene as solvent (1ml) and DABCO (1 equiv) stirred at 100 °C and monitored the reaction on TLC. After consuming starting material was completely reaction mixture was quenched by water and extracted with EtOAc (3x15ml). After removal of solvents in vacuo, the residue was subjected to column chromatography on silica gel (100-200 mesh) using hexane as eluent to give desired product **8**.

S4.3. Experimental procedure for the *one-pot* synthesis of 8 (Method D)

2-Azidobenzaldehyde (1.0 equiv), isocyanide (1.2 equiv), $Pd(OAc)_2$ (7.5 mol%), 4 Å MS, *p*-tosyl hydrazide (1.1 equiv) in toluene at room temeparature in 20 mL Schlenk tube, monitor the reaction for 15 min. after formation of azomethine imine **4**, allenoates **7** (2 equiv) was added with (1 equiv) DABCO in reaction mixture stirred at 100 °C and monitor the reaction on TLC. After consuming azomethine imine, **4** was completely reaction mixture was quenched by water and extracted with EtOAc (3x15ml). After removal of solvents in vacuo, the residue was subjected to column chromatography on silica gel (100-200 mesh) using hexane as eluent to give desired product **8**.

S4.4. Analytical data of 8

8a. ethyl 5-(tert-butylamino)-2-methylpyrazolo[1,5-c]quinazoline-1-carboxylate.

White solid, Yield: (Method C: 0.091 g, 82%, Method D: 0.083 g, 75%); ¹H NMR (δ /ppm, CDCl₃): 9.31 (d, 1H, J = 8.2 Hz), 7.69 (d, 1H, J = 8.2 Hz) 7.61 (t, 1H, J = 8.0 Hz), 7.34 (t, 1H, J = 8.0 Hz), 6.49 (br s, 1H), 4.49 (q, 2H, J = 7.1 Hz), 2.67 (s, 3H) 1.66 (s, 9H), 1.50 (t, 3H, J = 7.2 Hz). ¹³C{¹H} NMR (125 MHz, CDCl₃): 164.5, 154.1, 143.6, 141.8, 141.5, 130.9, 126.8, 126.1, 122.7, 115.3, 107.2, 60.5, 52.1, 29.0, 15.7,

14.4. HRMS (EI) calcd for $C_{18}H_{23}N_4O_2$ (M+H⁺) 327.1816 found 327.1802.

8b. ethyl2-methyl-5-((2,4,4-trimethylpentan-2-yl)amino)pyrazolo[1,5-c]quinazoline-1-carboxylate.

Light yellow oil, Yield: (Method C: 0.092 g, 71%, Method D: 0.078 g, 61%); ¹**H NMR (\delta ppm**): (500 MHz, CDCl₃): 9.29 (d, 1H, J = 8.2 Hz), 7.68 (d, 1H, J = 8.2Hz) 7.60 (t, 1H, J = 8.1 Hz), 7.33 (t, 1H, J = 8.1 Hz), 6.60 (br s, 1H), 4.49 (q, 2H, J = 7.1 Hz), 2.66 (s, 3H), 2.08 (s, 2H), 1.71 (s, 6H), 1.49 (t, 3H, J = 7.2 Hz), 1.05 (s, 9H). ¹³C{¹H} NMR (125 MHz, CDCl₃): 164.5, 153.9, 148.4, 143.7, 141.7, 130.8, 126.8, 126.1, 125.9, 122.6, 115.3, 60.4, 55.8, 51.7, 31.5, 29.7, 29.4, 15.6, 14.4. HRMS (EI) calcd for C₂₂H₃₁N₄O₂ (M+H⁺) 383.2442 found 383.2454.

8c. ethyl 5-(tert-butylamino)-8-chloro-2-methylpyrazolo[1,5-c]quinazoline-1-carboxylate.

Colourless liquid, Yield: (Method C: 0.085 g, 70%, Method D: 0.076 g, 63%); ¹H NMR (δ ppm): (500 MHz, CDCl₃): 9.30 (d, 1H, *J* = 8.8 Hz), 7.68 (s, 1H) 7.28 (dd, 1H, *J* = 2.2, 8.9 Hz), 6.56 (br s, 1H), 4.48 (q, 2H, *J* = 7.2 Hz), 2.66 (s, 3H), 1.65 (s, 9H), 1.49 (t, 3H, *J* = 7.2 Hz) ¹³C{¹H} NMR (125 MHz, CDCl₃): 164.3, 154.3, 147.1, 144.7, 142.3, 136.6, 128.3, 125.3, 123.1, 113.8, 107.4, 60.6, 52.2, 28.9, 15.7,

14.4. HRMS (EI) calcd for $C_{18}H_{22}CIN_4O_2$ (M+H⁺) 361.1426 found 361.1420.

8d. ethyl 8-chloro-2-methyl-5-((2,4,4-trimethylpentan-2-yl)amino)pyrazolo[1,5-c]quinazoline-1-carboxylate.

Colourless liquid, Yield: (Method C: 0.090g, 69%, Method D: 0.080 g, 62%); ¹H NMR (δ ppm): (500 MHz, CDCl₃) 9.30 (d, 1H, *J* = 8.8 Hz), 7.67 (s, 1H) 7.27 (dd, 1H, *J* = 2.2, 8.9 Hz), 6.66 (br s, 1H), 4.48 (q, 2H, *J* = 7.2 Hz), 2.66 (s, 3H), 2.06 (s, 2H), 1.70 (s, 6H,) 1.49 (t, 3H, *J* = 7.2 Hz) 1.04 (s,

9H), ¹³C{¹H} NMR (125 MHz, CDCl₃): 164.4, 154.3, 147.1, 144.7, 142.1, 136.5, 128.3, 125.3, 122.9, 113.7, 107.4, 60.6, 55.9, 51.6, 31.8, 31.5, 29.4, 15.8, 14.4. HRMS (EI) calcd for C₂₂H₃₀ClN₄O₂ (M+H⁺) 417.2052 found 417.2033.

8e. ethyl 5-(tert-butylamino)-2-ethylpyrazolo[1,5-c]quinazoline-1-carboxylate.

Colorless oil, Yield: (Method C: 0.087 g, 63%, Method D: 0.070 g, 52%); ¹H NMR (δ ppm): (500 MHz, CDCl₃): 9.24 (d, 1H, J = 7.9 Hz), 7.69 (d, 2H, J = 8.2 Hz) 7.60 (t, 1H, J = 8.1 Hz), 7.33 (t, 1H, J = 7.8 Hz), 6.52 (br s, 1H), 4.50 (q, 2H, J = 7.2 Hz), 3,1 (q, 2H, J = 7.2 Hz) 1.67 (s, 9H), 1.50 (t, 3H), 0.92(t, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃): 164.5, 158.9, 143.6, 139.2, 130.7, 126.7, 126.1, 122.6, 115.5, 114.0,

106.5, 60.5, 52.0, 29.0, 14.3, 14.1, 13.4. HRMS (EI) calcd for $C_{19}H_{25}N_4O_2$ (M+H⁺) 341.1972 found 341.1985..

S5. Synthesis of compound 11

S5.1 Screening of 4-CR for the synthesis of 11

N ⁻	$R^3 + Br H$	OBn <u>Solvent</u> Base	$\xrightarrow{\text{BnO}_{N}}_{R^1 \stackrel{\text{\tiny I}}{\underset{l}{\underset{l}{\underset{l}{\underset{l}{\underset{l}{\underset{l}{\underset{l}{\underset$	
Entry	Solvent	Base	Yield ^b	
1	THF	K ₂ CO ₃	NR	
2	DMSO	K_2CO_3	5	
3	Acetonitrile	K_2CO_3	70	
4	MeOH	K_2CO_3	10	
5	1,2-DCE	K_2CO_3	15	
6	1,4-dioxane	K_2CO_3	10	
7	DMF	K_2CO_3	NR	
8	toluene	K_2CO_3	80	
9	toluene	DBU	15	
10	toluene	K_3PO_4	10	
11	toluene	DABCO	10	
12	toluene	Na ₂ CO ₃	55	
13	toluene	Cs_2CO_3	30	
14	toluene	Et ₃ N	20	
15	toluene	K_2CO_3	80^{c}	
16	toluene	K_2CO_3	55^d	

ö

Table 5.1: Optimization of the reaction condition for method E^{*a*}:

S5.2. Experimental procedure for the sequential synthesis of 11 (Method E)

To a reaction vial (10 mL) was charged with azomethine imine **4** (1.0 equiv), *N*-(benzyloxy)-2-bromo-2-methylpropanamide **9** (2.0 equiv) and K_2CO_3 (2.0 equiv) in toluene as solvent (1.0 mL) stirred at 70 °C and monitor the reaction progress on TLC. After completion of the reaction on TLC, the mixture was quenched by water and extracted with EtOAc (3 x 15 mL). After removal of solvents in vacuo, the residue was subjected to column chromatography on silica gel (100-200 mesh) using hexane as eluent to give the desired product **11**.

S5.3. Experimental procedure for the one-pot synthesis of 11 (Method F)

2-Azidobenzaldehyde (1.0 equiv), isocyanide (1.2 equiv), $Pd(OAc)_2$ (7.5 mol%), 4 Å MS, *p*-toluene sulfonylhydrazide (1.1 equiv) in toluene at room temeprature in 20 mL Schlenk tube, monitor the reaction for 15 min. after formation of azomethine imine **4**, *N*-(benzyloxy)-2-bromo-2-methylpropanamide **9** (2 equiv) and K₂CO₃ (2.0 equiv) was added in reaction mixture and stirred at 70 °C for 1-2 h. The progress of the reaction was monitored on TLC. After completion of the reaction, the

^aReaction conditions: **4a** (0.11 mmol), **9a**, (0.22 mmol), base (0.22 mmol), solvent (0.2 mL), 70 °C, 3 h. ^bYields are of isolated product after column chromatography. ^cReaction at 90 °C. ^dReaction at room temperature after 12 h; nr: no reaction.

mixture was quenched by water and extracted with EtOAc ($3 \times 15 \text{ mL}$). After removal of solvents in vacuo, the residue was subjected to column chromatography on silica gel (100-200 mesh) using hexane as eluent to give desired product **11**.

S5.4. Analytical data

11a. 1-(benzyloxy)-3,3-dimethyl-4-(phenylsulfonyl)-6-((2,4,4-trimethylpentan-2-yl)amino)-1,3,4,11b-tetrahydro-2H-[1,2,4]triazino[2,3-c]quinazolin-2-one

Colourless liquid, Yield: 0.052 g (72%); $R_f 0.4$ (7:3 EtOAc/hexane); ¹H NMR (δ ppm): (500 MHz, CDCl₃): 7.89 (d, 2H, J = 7.5 Hz), 7.69 (d, 1H, J = 7.0 Hz), 7.52 (t, 2H, J = 7.3 Hz), 7.47 (t, 1H, J = 7.3 Hz), 7.26-7.16 (m, 4H), 7.04 (t, 1H, J = 7.0 Hz), 6.95 (d, 1H, J = 6.9 Hz), 6.88 (d, 2H, J = 6.9 Hz), 5.53 (s, 1H), 5.30 (s, 1H), 4.79 (d, 1H, J = 8.4 Hz), 3.87 (d, 1H, J = 8.3 Hz), 2.22 (d, 1H, J = 14.6 Hz), 2.04 (s, 3H), 2.0 (s, 3H), 1.61 (d, 1H, J = 14.5 Hz), 1.28 (s, 6H), 1.01 (s,

9H). ¹³C{¹H} NMR (δ ppm): (125 MHz, CDCl₃): 167.4, 146.9, 143.3, 137.6, 134.2, 133.7, 131.2, 129.9, 129.3, 129.0, 128.8, 128.7, 128.2, 123.3, 121.4, 115.7, 78.7, 71.8, 70.8, 55.9, 50.8, 31.6, 29.3, 29.2, 27.9, 25.9. HRMS (EI) calcd for C₃₃H₄₂N₅O₄S (M+H⁺):604.2952, found 604.2932.

11b. 1-(benzyloxy)-3,3-dimethyl-4-tosyl-6-((2,4,4-trimethylpentan-2-yl)amino)-1,3,4,11b-tetrahydro-2H-[1,2,4]triazino[2,3-c]quinazolin-2-one

Colourless liquid, Yield: 0.061 g (85%); $R_f 0.5$ (7:3 EtOAc/hexane); ¹H NMR (δ ppm): (500 MHz, CDCl₃): 7.66 (d, 2H, J = 8.2 Hz), 7.35 (t, 1H, 7.7 Hz), 7.19 (t, 2H, J = 4.0 Hz), 7.15-7.09 (m, 3H), 7.06 (d, 1H, J = 7.9 Hz), 6.92 (t, 1H, J = 7.4 Hz), 6.87 (d, 1H, J = 7.4 Hz), 6.79 (d, 2H, J = 7.1 Hz), 5.51 (s, 1H), 5.17 (s, 1H), 4.68 (d, 1H, J = 8.6 Hz), 3.78 (d, 1H, J = 8.6 Hz), 2.35 (s, 3H), 2.10 (d, 1H, J = 14.7 Hz), 1.92 (s, 3H), 1.90 (s, 3H), 1.47 (s, 1H), 1.18 (s, 6H), 0.91 (s, 9H). ¹³C{¹H}

NMR (δ ppm): (125 MHz, CDCl₃): 167.5, 147.0, 145.3, 143.4, 134.8, 133.9, 131.1, 129.9, 129.8, 129.1, 128.7, 128.6, 128.2, 123.2, 121.3, 115.8, 78.6, 71.8, 70.7, 55.9, 50.9, 31.6, 29.2, 29.0, 27.9, 25.8, 21.6. **HRMS** (EI) calcd for C₃₄H₄₄N₅O₄S (M+H⁺):618.3109, found 618.3129.

11c. 1-(benzyloxy)-6-(*tert*-butylamino)-3,3-dimethyl-4-(naphthalen-1-ylsulfonyl)-1,3,4,11b-tetrahydro-2H-[1,2,4]triazino[2,3-c]quinazolin-2-one

White solid, Yield: 0.055 g (75%); M. P. 153-155 °C; R_f 0.5 (7:3 EtOAc/hexane); ¹H NMR (δ ppm): (500 MHz, CDCl₃): 8.90 (d, 1H, J = 8.2 Hz), 8.22 (d, 1H, J = 7.3 Hz), 8.15 (d, 1H, J = 8.1 Hz), 7.99 (d, 1H, J = 7.5 Hz), 7.63-7.55 (m, 2H), 7.53 (t, 1H, J = 7.8 Hz), 7.41 (t, 1H, J = 7.1 Hz), 7.26-7.19 (m, 3H), 7.11 (d, 1H, J = 7.1 Hz), 7.04-6.98 (m, 2H), 6.87 (d, 2H, J = 7.1

Hz), 6.24 (s, 1H), 4.77 (d, 1H, *J* = 8.7 Hz), 4.68 (s, 1H), 3.94 (d, 1H, *J* = 8.7 Hz), 2.23 (s, 3H), 2.11 (s, 3H), 0.77 (s, 9H). ¹³C{¹H} NMR (δ ppm): (125 MHz, CDCl3): 167.2, 146.5, 143.1, 139.3, 136.0, 134.2, 133.8, 133.3, 131.8, 130.9, 129.9, 129.4, 129.3, 129.1, 128.9, 128.8, 128.2, 127.2, 124.4, 124.0, 123.0, 121.4, 115.9, 78.3, 72.1, 70.9, 51.2, 29.7, 27.9, 27.6, 26.4. HRMS (EI) calcd for C₃₃H₃₆N₅O₄S (M+H⁺):598.2483, found 598.2466.

11d.1-(benzyloxy)-4-((4-methoxyphenyl)sulfonyl)-3,3-dimethyl-6-((2,4,4-trimethylpentan-2-yl)amino)-1,3,4,11b-tetrahydro-2H-[1,2,4]triazino[2,3-c]quinazolin-2-one

Colourless liquid, Yield: 0.050 g (70%); R_f 0.35 (8:2 EtOAc/hexane); ¹**H NMR (\delta ppm**): (500 MHz, CDCl₃): 7.80 (d, 2H, J = 8.4 Hz), 7.44-7.36 (m, 3H), 7.26-7.20 (m, 2H), 7.16 (d, 1H, J = 7.8 Hz), 7.04-6.97 (m, 1H), 6.95 (d, 2H, J = 8.4 Hz), 6.88 (d, 2H, J = 7.0 Hz), 5.63 (s, 1H), 5.30 (s, 1H), 4.99 (s, 1H), 4.78 (d, 1H, J = 8.4 Hz), 3.88 (s, 3H), 2.23 (d, 1H, J = 14.6 Hz), 2.02 (s, 3H), 2.0 (s, 3H), 1.56 (d, 1H, J = 13.5 Hz), 1.31 (s, 6H), 1.00 (s,

9H). ¹³C{¹H} NMR (δ ppm): (125 MHz, CDCl3): 167.5, 164.1, 147.1, 143.4, 133.8, 131.3, 131.1, 129.9, 128.9, 128.8, 128.7, 128.2, 123.2, 121.3, 115.8, 114.4, 78.6, 71.7, 70.5, 55.9, 55.8, 50.8, 31.6, 31.9, 29.7, 27.9, 25.8. HRMS (EI) calcd for C₃₄H₄₄N₅O₅S (M+H⁺):634.3058, found 634.3035.

11e: 1-(benzyloxy)-4-((4-bromophenyl)sulfonyl)-3,3-dimethyl-6-((2,4,4-trimethylpentan-2-yl)amino)-1,3,4,11b-tetrahydro-2H-[1,2,4]triazino[2,3-c]quinazolin-2-one

Colourless liquid, Yield: 0.052 g (70%); R_f 0.35 (7:3 EtOAc/hexane); ¹H NMR (δ ppm): (500 MHz, CDCl₃): 7.74 (d, 2H, J = 8.6 Hz), 7.64 (d, 2H, J = 8.6 Hz), 7.47 (dt, 1H, J = 7.8, 1.35 Hz), 7.26-7.25 (m, 1H), 7.06 (t, 1H, J = 7.4 Hz),7.00-6.98 (m, 1H), 6.98 (d, 2H, J = 7.0 Hz), 5.61 (s, 1H), 5.21 (br s, 1H), 4.78 (d, 1H, J = 8.6 Hz), 3.89 (d, 1H, J = 8.6 Hz), 2.20 (d, 1H, J = 14.6 Hz), 2.03 (s, 3H), 2.0 (s, 3H), 1.45 (s, 1H), 1.41 (s, 3H), 1.32 (s, 3H), 1.01 (s, 9H). ¹³C{¹H} NMR (δ ppm):

(**125** MHz, CDCl₃): 167.2, 146.7, 143.2, 136.6, 133.8, 132.5, 131.3, 130.5, 129.9, 128.8, 128.6, 128.2, 123.4, 121.6, 115.7, 114.1, 78.7, 71.8, 70.8, 56.0, 50.9, 31.6, 27.9, 25.9. 14.1. HRMS (EI) calcd for C33H₄₁BrN₅O₄S (M+H⁺):682.2057, found 682.2043.

S6. Synthesis of compound 12

S6.1 Experimental procedure for the *sequential* synthesis of 12 (Method G)

To a reaction vial (10 mL) was charged with azomethine imine **4** (1.0 equiv), cyclohexanone **10** (2.0 equiv) and K_3PO_4 (2.0 equiv) in ethanol as solvent (1.0 mL) stirred at 80 °C and monitor the reaction progress on TLC. After completion of the reaction on TLC, the mixture was quenched by water and extracted with EtOAc (3 x 15 mL). After removal of solvents in vacuo, the residue was subjected to column chromatography on silica gel (100-200 mesh) using hexane as eluent to give desired product **12**.

S6.2. Analytical data of 12

12a. N-(tert-butyl)-9,10,11,12-tetrahydroindazolo[2,3-c]quinazolin-6-amine

Colorless oil, Yield: 0.061 g (85%); $R_f 0.6$ (8:2 EtOAc/hexane); ¹H NMR (δ ppm): (500 MHz, CDCl₃):7.89 (d, 1H, J = 7.8 Hz), 7.64 (d, 1H, J = 8.1 Hz), 7.47 (td, 1H, J = 8.3, 1.3 Hz), 7.26-7.23 (m, 1H), 6.30 (bs, 1H), 3.02 (d, 2H, J = 5.6 Hz), 2.89 (d, 2H, J = 5.6 Hz), 1.94 (t, 4H, J = 3.0 Hz), 1.64 (s, 9H). ¹³C{¹H} NMR (δ ppm): (125 MHz, CDCl₃): 152.1, 142.3, 141.9, 135.0, 128.6, 125.8, 122.9, 122.3, 117.4,

110.5, 51.8, 29.2, 24.0, 23.3, 22.9, 22.1. **HRMS** (EI) calcd for $C_{18}H_{23}N_4$ (M+H⁺):295.1917, found 295.1921.

12b: N-(2,4,4-trimethylpentan-2-yl)-9,10,11,12-tetrahydroindazolo[2,3-c]quinazolin-6-amine

White solid, Yield: 0.061 g (85%); m. p. 104-105 °C; R_f 0.5 (8:2 EtOAc/hexane); ¹H NMR (δ ppm): (500 MHz, CDCl₃): (500 MHz, CDCl₃): (500 MHz, CDCl₃): 7.89 (d, 1H, J = 7.7 Hz), 7.65 (d, 1H, J = 8.1 Hz), 7.48 (td, 1H, J = 8.2, 1.1 Hz), 7.25 (t, 1H, J = 7.8 Hz), 6.38 (bs, 1H), 3.02 (d, 2H, J = 5.4 Hz), 2.89 (d, 2H, J = 5.2 Hz), 2.09 (s, 2H), 1.94 (d, 4H, J = 2.9 Hz), 1.68 (s, 6H),

1.03 (s, 9H). ¹³C{¹H} NMR (δ ppm): (125 MHz, CDCl₃): 152.0, 142.2, 141.9, 134.9, 128.5, 125.8, 122.8, 122.2, 117.4, 110.4, 55.5, 51.5, 31.5, 29.7, 29.6, 24.0, 23.3, 22.9, 22.2. **HRMS** (EI) calcd for C₂₂H₃₁N₄ (M+H⁺):351.2543, found 351.2529.

S7. References

- 1. B. J. Stokes, S.Liu, T. G. Driver, J. Am. Chem. Soc. 2011, 133, 4702.
- 2. F.-L. Yang, X.-T. Ma; S.-K. Tian, Chem. Eur. J., 2012, 18, 1582.

S8. Copy of ¹H and ¹³C NMR spectrum

-1.1846

~154.80 ~150.34 ~148.18	141.70 141.06 137.94 129.58 126.14 124.98 -117.17		
$ \begin{array}{c} & \stackrel{+}{\underset{N}{\longrightarrow}} \stackrel{N}{\underset{S}{\longrightarrow}} \stackrel{0}{\underset{NH}{\longrightarrow}} \\ & \stackrel{0}{\underset{4a}{\longleftarrow}} \\ & 4a \\ \end{array} $			
		1	
170 160 150	140 130 120 110 100 90 80 f1 (ppm) S24		

		—115.75		94 C7 —		
$\operatorname{Br}^{\operatorname{H}^{\operatorname{H}^{\operatorname{N}}}}}}}}}}$	L					
	D 140 130 1	20 110 100	90 80 f1 (ppm) S28	70 60	50 40 30	20 10 0

-1.7995

---0.9017

---0.4769

154.43 -149.08 144.58 144.58 135.48 131.76 131.19 127.26√120.54 √118.62 √117.74

72	6		
54.	51.		

31.66
31.49
30.05 --21.58

4e

∼154.97 ∽150.44 −148.16 ∽144.06	-138.07 131.22 129.05 128.80 126.07 126.07 125.05	-117.19
$\langle \rangle \rangle$		

---52.25

---27.64

	000408400008400084
õ	00001000000000000000000000000000000000
σ Ω	0 8 7 7 9 7 0 0 7 0 0 7 0 0 7 7 8 0
m.	888888889999444466669
6	
1	

60000	
M M 4 4 0 0	1 5 5 5 5 5 M

—27.69

-1.2295

0 N 4 4 W	$\infty \infty \infty \infty \infty$	2
onoom	- 00	\sim
പ്രത്ത്ത്	പ്പുറ്റ്റ്റ്റ്	~
<u>ю 644</u> 64 60	ででんてんで	÷
-	\dashv \dashv \dashv \dashv \dashv \dashv	-
$/// \langle \langle$		

---52.40

—27.69

*.N.S. 0 NĤ NO2 4h

498 013 341	563 563 559 563 563 563 563 563 563 563 563 563 563
9.10 9.08	7.959 7.566 7.567 7.567 7.5667 7.566 7.5667 7.5667 7.5667 7.5667 7.5667 7.5667 7.5667 7.5667 7.5

-0.7280

~155.27 ~150.38 ~148.25	132.50 128.93 128.75 126.75 126.75 125.70 124.94 124.05	 		/0./2
1			L.	

0
4 0 8 5 4 6 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8
\ddot{V} V N N A \dot{V} \dot{V} O A \dot{V} O O O O O O O O \dot{V}
w & & & & ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
6 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

 154.77 150.58 148.24 145.41 	-138.22 130.54 129.69 129.69 128.83 128.83 128.83 126.11 125.11	

---52.44

---27.81

6611 6440 6440 6440 66410 6570 6570 6570 6570 6570 6570 6570 657	7766
	4

---0.7990

000000000000000000000000000000000000000
<u>0001000000000000000000000000000000000</u>
11887999444666777100777666871

