Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

s1

New Journal of Chemistry

Supplementary information

Which DFT levels of theory are appropriate in predicting the prolyl *cis*—*trans* isomerization in solution?

Hae Sook Park^{*a*} and Young Kee Kang*^{*b*}

 ^a Department of Nursing, Cheju Halla University, Cheju 63092, Republic of Korea
 ^b Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea

E-mail: ykkang@chungbuk.ac.kr

Page	Contents
s1–s4	Table of contents
s5	Table S1 Torsion angles of local minima for Ac-Pro-NHMe optimized at the PCM $M06-2X/6-31+G(d)$ level of theory in chloroform
s5	Table S2 Torsion angles of local minima for Ac-Pro-NHMe optimized at the SMD $M06-2X/6-31+G(d)$ level of theory in chloroform
sб	Table S3 Torsion angles of local minima for Ac-Pro-NHMe optimized at the PCM $M06-2X/6-31+G(d)$ level of theory in water
sб	Table S4 Torsion angles of local minima for Ac-Pro-NHMe optimized at the SMD $M06-2X/6-31+G(d)$ level of theory in water
s7	Table S5 Relative free energies of local minima for Ac-Pro-NHMe optimized at the PCM $M06-2X/6-31+G(d)$ level of theory depending on single-point energies in chloroform
s7	Table S6 Relative free energies of local minima for Ac-Pro-NHMe optimized at the SMD M06-2X/6-31+G(d) level of theory depending on single-point energies in chloroform
s8	Table S7 Relative free energies of local minima for Ac-Pro-NHMe optimized at the PCM $M06-2X/6-31+G(d)$ level of theory depending on single-point energies in water
s8	Table S8 Relative free energies of local minima for Ac-Pro-NHMe optimized at the SMD M06-2X/6-31+G(d) level of theory depending on single-point energies in water

- s9 **Table S9** Populations of the backbone conformations of local minima for Ac-Pro-NHMe optimized at the PCM M06-2X/6-31+G(d) level of theory depending on single-point energies in chloroform
- s9 **Table S10** Populations of the backbone conformations of local minima for Ac-Pro-NHMe optimized at the SMD M06-2X/6-31+G(d) level of theory depending on single-point energies in chloroform
- s10 **Table S11** Populations of the backbone conformations of local minima for Ac-Pro-NHMe optimized at the PCM M06-2X/6-31+G(d) level of theory depending on single-point energies in water
- s10 **Table S12** Populations of the backbone conformations of local minima for Ac-Pro-NHMe optimized at the SMD M06-2X/6-31+G(d) level of theory depending on single-point energies in water
- s11 **Table S13** Torsion angles and thermodynamic properties of local minima and transition states of Ac-Pro-OMe in chloroform
- s12 **Table S14** Torsion angles and thermodynamic properties of local minima and transition states of Ac-Pro-OMe in water
- s13–s14 **Table S15** Torsion angles and thermodynamic properties of local minima and transition states of Ac-Hyp-OMe in chloroform
- s15–s16 **Table S16** Torsion angles and thermodynamic properties of local minima and transition states of Ac-Hyp-OMe in water
- s17–s18 **Table S17** Torsion angles and thermodynamic properties of local minima and transition states of Ac-hyp-OMe in chloroform
- s19–s20 **Table S18** Torsion angles and thermodynamic properties of local minima and transition states of Ac-hyp-OMe in water
- s21 **Table S19** Torsion angles and thermodynamic properties of local minima and transition states of Ac-Flp-OMe in water
- s22 **Table S20** Torsion angles and thermodynamic properties of local minima and transition states of Ac-flp-OMe in water
- s23 **Table S21** Torsion angles and thermodynamic properties of local minima and transition states of Ac-mep-OMe in water
- s24 **Table S22** Torsion angles and thermodynamic properties of local minima and transition states of Ac-Mep-OMe in water

- s25 **Table S23** Torsion angles and thermodynamic properties of local minima and transition states of Ac-Clp-OMe in water
- s26 **Table S24** Torsion angles and thermodynamic properties of local minima and transition states of Ac-clp-OMe in water
- s27–s28 **Table S25** Torsion angles and thermodynamic properties of local minima and transition states of Ac-mpc-OMe in chloroform
- s29–s30 **Table S26** Torsion angles and thermodynamic properties of local minima and transition states of Ac-Mpc-OMe in chloroform
- s31–s32 **Table S27** Torsion angles and thermodynamic properties of local minima and transition states of Ac-mop-OMe in chloroform
- s33–s34 **Table S28** Torsion angles and thermodynamic properties of local minima and transition states of Ac-mop-OMe in water
- s35 **Table S29** Torsion angles and thermodynamic properties of local minima and transition states of Ac-(2-Mep)-NHMe in chloroform
- s36 **Table S30** Torsion angles and thermodynamic properties of local minima and transition states of Ac-(2-Mep)-NHMe in water
- s37 **Table S31** Torsion angles and thermodynamic properties of local minima and transition states of Ac-(3-mep)-NHMe in chloroform
- s38 **Table S32** Torsion angles and thermodynamic properties of local minima and transition states of Ac-(3-mep)-NHMe in water
- s39 **Table S33** Torsion angles and thermodynamic properties of local minima and transition states of Ac-(3-Mep)-NHMe in chloroform
- s40 **Table S34** Torsion angles and thermodynamic properties of local minima and transition states of Ac-(3-Mep)-NHMe in water
- s41 **Table S35** Torsion angles and thermodynamic properties of local minima and transition states of Ac-(5-mep)-NHMe in chloroform
- s42 **Table S36** Torsion angles and thermodynamic properties of local minima and transition states of Ac-(5-mep)-NHMe in water
- s43 **Table S37** Torsion angles and thermodynamic properties of local minima and transition states of Ac-(5-Mep)-NHMe in chloroform

- s44 **Table S38** Torsion angles and thermodynamic properties of local minima and transition states of Ac-(5-Mep)-NHMe in water
- s45 **Table S39** Torsion angles and thermodynamic properties of local minima and transition states of Ac-(5-tbp)-NHMe in water
- s46 **Table S40** Torsion angles and thermodynamic properties of local minima and transition states of Ac-(5-Tbp)-NHMe in water
- s47–s48 **Table S41** Torsion angles and thermodynamic properties of local minima and transition states of Ac-Hyp-NHMe in water
- s49–s50 **Table S42** Torsion angles and thermodynamic properties of local minima and transition states of Ac-hyp-NHMe in water

100-210/0	1000-2X/0-51+O(0) level of theory in emotoronic										
Conf.	ω'	ϕ	Ψ	ω	χ^0	χ^1	χ^2	χ^3	χ^4		
cAd	9	-89	-6	-179	-14	33	-39	30	-10		
cAu	5	-73	-23	-177	3	-25	38	-36	21		
cFd	-2	-71	155	176	-15	32	-38	28	-8		
cFu	-3	-55	145	177	5	-27	38	-35	19		
tAd	-172	-86	-4	177	-12	32	-40	32	-12		
tAu	-173	-69	-23	-180	5	-27	38	-35	19		
tCd	-173	-85	67	-178	-14	33	-40	31	-10		
tCu	-174	-83	78	-176	-9	-16	34	-38	30		
tFd	177	-66	144	180	-12	30	-37	30	-11		
tFu	178	-57	138	-179	2	-25	38	-36	21		

Table S1 Torsion angles (°) of local minima for Ac-Pro-NHMe optimized at the PCM M06-2X/6-31+G(d) level of theory in chloroform^{*a*}

^{*a*} Torsion angles are defined in Fig. 1c.

Table S2 Torsion angles (°) of local minima for Ac-Pro-NHMe optimized at the SMD M06-2X/6-31+G(d) level of theory in chloroform^{*a*}

1100-271/0											
Conf.	ω'	ϕ	Ψ	ω	χ^0	χ^1	χ^2	χ^{3}	χ^4		
cAd	7	-89	-6	-179	-16	34	-39	30	-9		
cAu	4	-73	-22	-177	1	-24	37	-36	22		
cFd	-2	-71	154	176	-16	32	-38	28	-8		
cFu	-4	-56	148	176	3	-26	38	-35	20		
tAd	-172	-84	-5	177	-13	32	-40	32	-12		
tAu	-174	-69	-22	-180	5	-27	39	-35	19		
tCd	-172	-85	66	-179	-14	33	-40	31	-11		
tCu	-174	-82	79	-176	-8	-17	34	-38	29		
tFd	178	-67	142	180	-11	30	-37	30	-12		
tFu	178	-58	137	-178	1	-24	38	-36	22		

^{*a*} Torsion angles are defined in Fig. 1c.

Conf.	ω	ϕ	Ψ	ω	χ^0	χ^1	χ^2	χ^3	χ^4	
cAd	9	-89	-8	-179	-14	33	-39	30	-10	
cAu	6	-68	-27	-177	6	-28	39	-34	18	
cFd	-2	-73	158	177	-16	33	-38	28	-7	
cFu	-3	-56	147	177	5	-27	38	-35	19	
tAd	-173	-81	-12	-179	-10	30	-39	33	-14	
tAu	-174	-67	-27	-177	6	-27	39	-35	18	
tCd	-172	-85	65	-179	-14	33	-40	31	-10	
tCu	-173	-83	76	-176	-8	-17	34	-39	30	
tFd	178	-67	150	176	-11	30	-38	31	-13	
tFu	179	-57	143	178	4	-26	38	-35	20	

Table S3 Torsion angles (°) of local minima for Ac-Pro-NHMe optimized at the PCM M06-2X/6-31+G(d) level of theory in water^{*a*}

^{*a*} Torsion angles are defined in Fig. 1c.

Table S4 Torsion angles (°) of local minima for Ac-Pro-NHMe optimized at the SMD M06-2X/6-31+G(d) level of theory in water^{*a*}

Wi00-2X/0-51+O(u) level of theory in water										
Conf.	ω'	ϕ	Ψ	ω	χ^{0}	χ^1	χ^2	χ^{3}	χ^4	
cAd	2	-86	-9	-179	-19	35	-38	26	-4	
cAu	-2	-71	-22	-177	-5	-19	34	-37	26	
cFd	-4	-68	154	176	-15	32	-37	28	-8	
cFu	-6	-55	150	177	4	-26	38	-36	20	
tAd	-178	-76	-12	-179	-13	32	-39	30	-10	
tAu	-178	-67	-21	-176	-1	-23	37	-37	24	
tCd	-171	-86	64	-180	-13	33	-41	32	-12	
tCu	-172	-83	80	-177	-5	-20	36	-39	27	
tFd	176	-61	149	176	-11	29	-37	30	-12	
tFu	179	-53	143	176	7	-29	39	-34	17	

^{*a*} Torsion angles are defined in Fig. 1c.

of theory depending	on single-point ene	igies in ch	1010101111								
Level of theory	Basis set	cAd	cAu	cFd	cFu	tAd	tAu	tCd	tCu	tFd	tFu
M06-2X	6-311++G(d,p)	0.76	2.11	2.65	2.93	1.36	2.43	0.00	2.52	1.45	1.93
	cc-pVTZ	1.30	2.63	2.82	3.04	1.76	2.77	0.00	2.61	1.62	2.07
	def2-TZVP	1.05	2.32	2.60	2.85	1.54	2.48	0.00	2.51	1.41	1.82
	def2-QZVP	1.06	2.34	2.55	2.76	1.49	2.45	0.00	2.50	1.33	1.72
<i>w</i> В97Х-D	6-311++G(d,p)	0.40	1.77	2.62	3.08	1.07	2.34	0.00	2.24	1.53	2.04
	cc-pVTZ	0.87	2.23	2.68	3.12	1.38	2.60	0.00	2.30	1.65	2.15
	def2-TZVP	0.61	1.94	2.44	2.87	1.16	2.32	0.00	2.23	1.39	1.83
	def2-QZVP	0.53	1.85	2.32	2.75	1.04	2.20	0.00	2.25	1.28	1.71
DSD-PBEP86-D3BJ	cc-pVTZ	1.20	2.49	2.87	3.12	1.63	2.57	0.00	2.25	1.65	1.96
4 m · · · · ·											

Table S5 Relative free energies (kcal mol⁻¹) of local minima for Ac-Pro-NHMe optimized at the PCM M06-2X/6-31+G(d) level of theory depending on single-point energies in chloroform^{*a*}

^{*a*} Torsion angles are listed in Table S1.

Table S6 Relative free energies (kcal mol^{-1}) of local minima for Ac-Pro-NHMe optimized at the SMD M06-2X/6-31+G(d) level of theory depending on single-point energies in chloroform^{*a*}

Level of theory	Basis set	cAd	cAu	cFd	cFu	tAd	tAu	tCd	tCu	tFd	tFu
M06-2X	6-311++G(d,p)	0.07	1.48	0.87	2.17	0.52	1.53	0.00	1.86	0.28	0.90
	cc-pVTZ	0.61	2.02	1.05	2.29	0.91	1.86	0.00	1.96	0.46	1.04
	def2-TZVP	0.35	1.69	0.83	2.09	0.69	1.57	0.00	1.87	0.24	0.79
	def2-QZVP	0.37	1.71	0.78	2.00	0.64	1.54	0.00	1.87	0.17	0.70
<i>ω</i> B97X-D	6-311++G(d,p)	0.00	1.38	1.07	2.54	0.50	1.71	0.26	1.86	0.62	1.24
	cc-pVTZ	0.53	1.75	2.38	3.00	1.09	2.00	0.00	1.66	1.48	1.79
	def2-TZVP	0.26	1.45	2.15	2.74	0.88	1.71	0.00	1.59	1.21	1.48
	def2-QZVP	0.20	1.35	2.02	2.62	0.76	1.60	0.00	1.61	1.11	1.36
DSD-PBEP86-D3BJ	cc-pVTZ	0.50	1.86	1.06	2.33	0.78	1.67	0.00	1.62	0.48	0.90

^{*a*} Torsion angles are listed in Table S2.

of theory depending	on single-point ene	igies in wa	ater								
Level of theory	Basis set	cAd	cAu	cFd	cFu	tAd	tAu	tCd	tCu	tFd	tFu
M06-2X	6-311++G(d,p)	0.07	1.48	0.87	2.17	0.52	1.54	0.00	1.86	0.28	0.26
	cc-pVTZ	0.61	2.02	1.06	2.29	0.91	1.88	0.00	1.96	0.46	0.40
	def2-TZVP	0.57	2.05	0.43	0.98	0.00	0.69	0.34	2.33	0.08	0.54
	def2-QZVP	0.37	1.71	0.78	2.00	0.64	1.55	0.00	1.87	0.17	0.06
<i>w</i> В97Х-D	6-311++G(d,p)	0.00	1.54	1.27	2.72	1.01	2.25	0.26	1.85	1.39	1.52
	cc-pVTZ	0.22	1.71	1.05	2.51	1.04	2.23	0.00	1.66	1.20	1.36
	def2-TZVP	0.00	1.49	0.86	2.30	0.87	2.00	0.04	1.64	1.00	1.07
	def2-QZVP	0.00	1.47	0.81	2.25	0.83	1.95	0.12	1.73	0.93	0.98
DSD-PBEP86-D3BJ	cc-pVTZ	0.65	2.24	0.59	1.14	0.00	0.67	0.27	2.01	0.26	0.60
<i>a</i>											

Table S7 Relative free energies (kcal mol⁻¹) of local minima for Ac-Pro-NHMe optimized at the PCM M06-2X/6-31+G(d) level of theory depending on single-point energies in water^{*a*}

^{*a*} Torsion angles are listed in Table S3.

Table S8 Relative free energies (kcal mol⁻¹) of local minima for Ac-Pro-NHMe optimized at the SMD M06-2X/6-31+G(d) level of theory depending on single-point energies in water^{*a*}

Level of theory	Basis set	cAd	cAu	cFd	cFu	tAd	tAu	tCd	tCu	tFd	tFu
M06-2X	6-311++G(d,p)	0.23	2.69	0.73	1.27	0.33	1.77	1.58	3.78	0.07	0.00
	cc-pVTZ	0.67	3.13	0.77	1.27	0.55	2.00	1.47	3.81	0.09	0.00
	def2-TZVP	0.64	3.03	0.73	1.34	0.56	1.94	1.73	3.97	0.15	0.00
	def2-QZVP	0.81	3.18	0.93	1.41	0.70	2.07	1.88	4.11	0.21	0.00
<i>w</i> В97Х-D	6-311++G(d,p)	0.00	2.41	0.80	1.53	0.16	1.79	1.72	3.70	0.34	0.29
	cc-pVTZ	0.15	2.55	0.52	1.23	0.06	1.72	1.37	3.45	0.04	0.00
	def2-TZVP	0.17	2.54	0.63	1.31	0.15	1.73	1.70	3.69	0.13	0.00
	def2-QZVP	0.27	2.61	0.69	1.36	0.21	1.79	1.86	3.88	0.16	0.00
DSD-PBEP86-D3BJ	cc-pVTZ	0.73	3.16	0.87	1.41	0.61	1.96	1.65	3.66	0.25	0.00

^{*a*} Torsion angles are listed in Table S4.

Level of theory	Basis set	С	А	tF	cF	cis
M06-2X	6-311++G(d,p)	64.2	26.8	7.9	1.2	20.5
	cc-pVTZ	77.5	14.1	7.3	1.1	10.5
	def2-TZVP	69.7	19.3	9.6	1.4	14.5
	def2-QZVP	68.5	19.1	10.8	1.6	14.1
<i>ω</i> B97X-D	6-311++G(d,p)	54.1	39.4	5.6	0.9	30.6
	cc-pVTZ	68.5	24.5	6.0	1.1	18.2
	def2-TZVP	58.6	31.9	8.2	1.4	24.1
	def2-QZVP	54.6	34.6	9.2	1.6	25.6
DSD-PBEP86-D3BJ	cc-pVTZ	75.3	16.4	7.3	1.0	11.7

Table S9 Populations (%) of the backbone conformations of local minima for Ac-Pro-NHMe optimized at the PCM M06-2X/6-31+G(d) level of theory depending on single-point energies in chloroform^{*a*}

^{*a*} Torsion angles are listed in Table S1. The population of each conformer was calculated using its ΔG value at 25 °C listed in Table S5. The *cis* population was calculated by summing the populations of cAd, cAu, cFd, and cFu conformers at each level of theory.

Table S10 Populations (%) of the backbone conformations of local minima for Ac-Pro-NHMe optimized at the SMD M06-2X/6-31+G(d) level of theory depending on single-point energies in chloroform

Level of theory	Basis set	С	А	tF	cF	cis
M06-2X	6-311++G(d,p)	28.9	40.8	23.3	7.1	34.1
	cc-pVTZ	41.3	25.8	25.3	7.5	23.1
	def2-TZVP	32.2	30.7	28.7	8.5	27.3
	def2-QZVP	30.7	29.5	30.9	8.9	26.2
<i>ω</i> B97X-D	6-311++G(d,p)	23.4	54.2	16.3	6.1	43.6
	cc-pVTZ	56.7	34.9	7.0	1.3	26.0
	def2-TZVP	45.8	43.5	9.1	1.6	33.0
	def2-QZVP	42.1	46.0	10.1	1.8	34.2
DSD-PBEP86-D3BJ	cc-pVTZ	39.2	29.4	24.6	6.9	24.3

^{*a*} Torsion angles are listed in Table S2. The population of each conformer was calculated using its ΔG value at 25 °C listed in Table S6. The *cis* population was calculated by summing the populations of cAd, cAu, cFd, and cFu conformers at each level of theory.

Level of theory	Basis set	С	А	tF	cF	cis
M06-2X	6-311++G(d,p)	25.8	36.4	31.4	6.3	30.5
	cc-pVTZ	36.4	22.7	34.2	6.7	20.3
	def2-TZVP	13.6	40.5	30.1	15.9	25.6
	def2-QZVP	26.1	25.0	41.3	7.6	22.3
<i>ω</i> B97X-D	6-311++G(d,p)	30.3	56.4	7.6	5.6	53.0
	cc-pVTZ	43.8	39.0	9.6	7.6	38.5
	def2-TZVP	33.7	45.8	11.9	8.6	45.4
	def2-QZVP	30.0	46.9	13.6	9.5	46.7
DSD-PBEP86-D3BJ	cc-pVTZ	17.3	43.4	26.0	13.3	22.4

Table S11 Populations (%) of the backbone conformations of local minima for Ac-Pro-NHMe optimized at the PCM M06-2X/6-31+G(d) level of theory depending on single-point energies in water

^{*a*} Torsion angles are listed in Table S3. The population of each conformer was calculated using its ΔG value at 25 °C listed in Table S7. The *cis* population was calculated by summing the populations of cAd, cAu, cFd, and cFu conformers at each level of theory.

Table S12 Populations (%) of the backbone conformations of local minima for Ac-Pro-NHMe optimized at the SMD M06-2X/6-31+G(d) level of theory depending on single-point energies in water

Level of theory	Basis set	С	А	tF	cF	cis
M06-2X	6-311++G(d,p)	1.9	35.6	51.4	11.0	29.7
	cc-pVTZ	2.8	24.4	60.3	12.6	23.1
	def2-TZVP	1.8	25.7	59.2	13.2	24.8
	def2-QZVP	1.6	22.5	64.5	11.4	21.1
<i>ω</i> B97X-D	6-311++G(d,p)	1.7	54.0	34.6	9.8	39.8
	cc-pVTZ	2.4	40.5	44.7	12.5	30.7
	def2-TZVP	1.5	40.8	46.1	11.7	31.2
	def2-QZVP	1.2	38.5	48.8	11.4	29.2
DSD-PBEP86-D3BJ	cc-pVTZ	2.4	25.3	60.5	11.9	22.8

^{*a*} Torsion angles are listed in Table S4. The population of each conformer was calculated using its ΔG value at 25 °C listed in Table S8. The *cis* population was calculated by summing the populations of cAd, cAu, cFd, and cFu conformers at each level of theory.

Conf. ω'				Tors	ion angl	es ^a				DSD-I	PBEP86-D	3BJ/cc-pV	VTZ^{b}	Ν	106-2X/de	f2-TZVP ^c	
Com.	ø	ϕ	Ψ	ω	χ^0	χ^1	χ ²	χ^3	χ^4	$\Delta E_{\rm e}{}^d$	ΔH^e	ΔG^{f}	w ^g	$\Delta E_{\rm e}{}^d$	ΔH^e	ΔG^{f}	w ^g
cAd	-3	-75	-11	-179	-19	35	-38	27	-5	1.31	1.20	1.04	4.4	1.45	1.34	1.10	4.0
cAu	-2	-56	-32	-178	4	-26	38	-35	20	1.83	1.90	2.48	0.4	1.78	1.85	2.36	0.5
cFd	-1	-76	169	178	-18	34	-38	27	-6	0.95	0.82	0.13	20.1	1.00	0.87	0.12	21.0
cFu	-3	-59	162	176	3	-25	38	-36	21	1.72	1.81	2.03	0.8	1.77	1.86	2.01	0.9
tAd	178	-63	-27	-179	-11	30	-38	31	-12	0.57	0.44	0.00	25.1	0.71	0.58	0.07	22.7
tAu	179	-53	-37	-179	5	-27	39	-35	19	0.57	0.52	0.83	6.2	0.67	0.61	0.85	6.1
tFd	177	-67	157	178	-13	31	-38	30	-11	0.00	0.00	0.07	22.4	0.00	0.00	0.00	25.6
tFu	179	-55	144	178	5	-27	39	-35	19	0.25	0.18	0.12	20.5	0.37	0.30	0.17	19.2
ts1	113	-103	71	-176	11	16	-36	43	-34	20.05	18.85	18.96		20.59	19.38	19.42	
ts2	114	-96	72	-177	17	-37	41	-32	9	21.05	20.12	21.56		21.50	20.57	21.94	
ts3	-65	-100	77	-174	10	16	-36	42	-33	22.07	20.96	21.52		22.48	21.37	21.87	
ts4	-65	-83	-77	175	24	-40	40	-26	2	23.53	22.40	23.08		23.90	22.77	23.38	
cis%													25.7				26.4

Table S13 Torsion angles (°) and thermodynamic properties (kcal mol⁻¹) of local minima and transition states of Ac-Pro-OMe in chloroform

Conf				Tors	ion angl	es ^a				DSD-I	PBEP86-D	3BJ/cc-pV	VTZ^{b}	Ν	106-2X/de	f2-TZVP ^c	
Com.	ø	ϕ	Ψ	ω	χ^0	χ^1	χ ²	χ^3	χ^4	$\Delta E_{ m e}{}^d$	ΔH^e	ΔG^{f}	w ^g	$\Delta E_{\rm e}{}^d$	ΔH^e	ΔG^{f}	w ^g
cAd	-8	-70	-13	-179	-21	35	-37	25	-3	1.30	1.26	1.41	3.0	1.43	1.39	1.54	2.7
cAu	-8	-52	-33	-180	2	-24	38	-36	22	1.96	2.09	2.51	0.5	1.82	1.96	2.38	0.6
cFd	-6	-74	169	176	-21	35	-37	25	-2	0.64	0.62	0.58	12.2	0.72	0.70	0.65	11.8
cFu	-7	-57	162	176	1	-24	38	-36	22	1.47	1.68	2.36	0.6	1.54	1.74	2.43	0.6
tAd	176	-62	-23	-177	-13	31	-38	30	-10	0.61	0.54	0.07	28.9	0.68	0.61	0.14	28.0
tAu	178	-52	-36	-177	6	-28	39	-35	18	0.45	0.54	0.79	8.5	0.53	0.62	0.87	8.2
tFd	176	-63	158	176	-13	31	-38	30	-11	0.00	0.00	0.00	32.3	0.00	0.00	0.00	35.6
tFu	180	-53	143	177	9	-30	40	-34	16	0.06	0.03	0.50	14.0	0.19	0.15	0.62	12.5
ts1	116	-99	80	-173	16	11	-34	44	-38	22.15	21.33	23.24		22.69	21.87	23.78	
ts2	115	-101	43	178	13	-35	42	-35	13	23.17	22.03	23.53		23.42	22.29	23.78	
ts3	-62	-110	76	-178	5	21	-38	41	-29	21.90	20.94	21.99		22.26	21.30	22.34	
ts4	-58	-85	-91	177	26	-42	42	-27	1	22.85	21.99	23.21		23.29	22.43	23.65	
cis%													16.3				15.7

Table S14 Torsion angles (°) and thermodynamic properties (kcal mol⁻¹) of local minima and transition states of Ac-Pro-OMe in water

Conf					Torsion	angles					DSD-l	PBEP86-	D3BJ/cc-	pVTZ	М	06-2X/d	ef2-TZVI	2
Com.	ď	ϕ	Ψ	ω	χ^0	χ^1	χ^2	χ^{3}	χ^4	$\chi^{\rm OH}$	$\Delta E_{\rm e}^{\ d}$	ΔH^{e}	ΔG^{f}	w^g	$\Delta E_{\rm e}^{\ d}$	ΔH^{e}	ΔG^{f}	w ^g
cAd-g	-3	-72	-18	-178	-18	33	-37	26	-5	59	2.66	2.50	1.66	1.1	2.68	2.51	1.68	1.0
cAd-gm	-4	-71	-15	-179	-18	34	-38	27	-6	-75	2.61	2.37	1.90	0.8	2.67	2.44	1.97	0.6
cAd-t	-4	-70	-19	-178	-16	33	-38	28	-7	-171	2.61	2.36	1.58	1.3	2.63	2.38	1.60	1.2
cAu-g	-6	-57	-32	-178	-4	-22	38	-39	27	72	2.40	2.35	2.00	0.6	2.21	2.15	1.81	0.8
cAu-gm	0	-58	-33	-177	7	-29	39	-35	17	-67	1.57	1.61	1.85	0.8	1.48	1.52	1.76	0.9
cAu-t	1	-58	-33	-177	6	-28	39	-35	19	176	1.38	1.40	1.62	1.2	1.22	1.24	1.46	1.5
cFd-g	-1	-75	166	177	-16	33	-38	28	-7	60	2.34	2.24	1.52	1.4	2.27	2.16	1.44	1.5
cFd-gm	-1	-75	166	177	-16	33	-38	29	-8	-78	2.24	2.04	1.01	3.4	2.23	2.04	1.00	3.2
cFd-t	-1	-74	166	177	-15	33	-38	29	-8	-170	2.15	1.94	1.01	3.4	2.07	1.86	0.92	3.6
cFu-g	-6	-60	164	177	-4	-21	37	-39	27	72	2.16	2.19	1.77	0.9	2.02	2.05	1.63	1.1
cFu-gm	0	-60	159	176	7	-28	39	-34	17	-68	1.44	1.57	1.56	1.3	1.39	1.52	1.51	1.3
cFu-t	1	-61	160	176	6	-28	39	-35	18	175	1.16	1.29	1.24	2.3	1.02	1.15	1.10	2.7
tAd-g	177	-60	-30	-179	-10	29	-37	31	-13	55	1.67	1.62	1.59	1.3	1.71	1.66	1.63	1.1
tAd-gm	177	-61	-29	-179	-11	30	-38	31	-13	-75	1.56	1.51	1.35	1.9	1.61	1.55	1.40	1.6
tAd-t	177	-60	-30	-179	-10	29	-38	31	-14	-166	1.64	1.58	1.44	1.6	1.73	1.67	1.53	1.3
tAu-g	177	-53	-36	-179	-2	-22	38	-38	26	61	1.09	1.07	1.17	2.6	1.01	0.99	1.09	2.7
tAu-gm	-179	-54	-36	-180	7	-28	39	-34	18	-65	0.34	0.32	0.53	7.6	0.35	0.33	0.54	6.9
tAu-t	-180	-53	-37	-179	7	-28	39	-34	17	-179	0.54	0.52	0.81	4.7	0.56	0.54	0.84	4.2
tFd-g	177	-65	154	177	-11	30	-38	30	-12	55	1.14	1.06	0.65	6.2	1.03	0.95	0.53	6.9
tFd-gm	177	-65	153	177	-11	30	-38	31	-13	-78	0.98	0.89	0.27	11.8	0.86	0.78	0.15	13.2
tFu-g	176	-56	146	179	-3	-22	38	-39	26	64	0.69	0.66	0.32	10.8	0.57	0.55	0.21	12.1
tFu-gm	-179	-57	143	179	6	-28	39	-34	18	-66	0.00	0.00	0.00	18.5	0.00	0.00	0.00	17.1
tFu-t	-180	-56	143	179	6	-28	39	-35	18	180	0.11	0.11	0.15	14.5	0.10	0.10	0.14	13.5
ts1	120	-106	68	-177	8	-31	42	-38	19	77	18.12	17.05	18.47		18.48	17.41	18.83	
ts2	112	-82	75	-177	31	-43	38	-19	-8	-66	20.88	19.63	20.22		21.22	19.97	20.56	
ts3	-68	-88	80	-174	23	-39	40	-26	2	-66	21.50	20.32	21.18		21.71	20.53	21.38	
ts4	-64	-102	76	-174	9	17	-36	42	-32	-77	22.94	21.80	22.32		23.15	22.01	22.53	
cis%														18.6				19.3

Table S15 Torsion angles (°) and thermodynamic properties (kcal mol⁻¹) of local minima and transition states of Ac-Hyp-OMe in chloroform

^{*a*} Torsion angles are defined in Fig. 1. Optimized at the PCM M06-2X/6-31+G(d) level of theory in chloroform. ^{*b*} Single-point energies by the DSD-PBEP86-D3BJ/cc-pVTZ method. ^{*c*} Single-point energies by the M06-2X/def2-TZVP method. ^{*d*} Relative electronic energies. ^{*e*} Relative enthalpies at 25 °C. ^{*f*} Relative Gibbs free energies at 25 °C and 1 atm. ^{*g*} Population (%) of *cis* conformers calculated using ΔG values.

Conf					Torsion	angles					DSD-I	PBEP86-	D3BJ/cc-	pVTZ	Μ	06-2X/de	ef2-TZVI	2
Com.	ø	ϕ	ψ	ω	χ^0	χ^1	χ ²	χ^3	χ^4	$\chi^{\rm OH}$	$\Delta E_{\rm e}{}^d$	ΔH^{e}	ΔG^{f}	w^g	$\Delta E_{\rm e}^{\ d}$	ΔH^{e}	ΔG^{f}	w^g
cAd-gm ^h	-8	-70	-16	-178	-22	35	-36	23	0	-72	2.84	3.14	3.69	0.1	2.84	3.14	3.69	0.1
cAd-g	-8	-70	-17	-178	-22	35	-36	23	-1	58	2.46	2.91	3.51	0.1	2.41	2.85	3.46	0.1
cAd-t	-8	-70	-16	-178	-22	35	-36	23	0	-168	2.92	3.22	3.74	0.1	2.88	3.17	3.70	0.1
cAu-gm	-4	-54	-33	180	6	-28	39	-35	18	-64	1.91	1.99	2.21	0.7	1.72	1.80	2.02	0.9
cAu-g	-5	-54	-33	-180	5	-26	37	-34	19	54	3.09	3.12	3.19	0.1	2.77	2.79	2.87	0.2
cAu-t	-4	-54	-32	180	5	-27	39	-35	19	176	2.03	2.08	2.04	0.9	1.74	1.79	1.75	1.5
cFd-gm	-4	-73	165	178	-17	33	-38	27	-6	-74	2.28	2.36	1.37	2.9	2.28	2.35	1.37	2.8
cFd-g	-3	-72	164	178	-16	33	-38	28	-7	59	1.91	2.23	1.63	1.9	1.84	2.16	1.56	2.0
cFd-t	-4	-72	163	177	-16	33	-38	28	-7	-171	2.40	2.55	1.74	1.6	2.30	2.45	1.64	1.8
cFu-gm	-4	-57	164	175	5	-26	38	-34	18	-63	1.36	1.51	1.72	1.6	1.28	1.42	1.64	1.8
cFu-g	-5	-58	166	175	2	-24	37	-35	20	58	2.59	2.78	3.19	0.1	2.40	2.58	3.01	0.2
cFu-t	-5	-58	165	175	3	-25	38	-35	20	175	1.46	1.59	1.93	1.1	1.27	1.40	1.75	1.5
tAd-gm	176	-56	-32	-179	-10	29	-37	31	-14	-75	2.06	2.36	2.83	0.2	2.04	2.34	2.82	0.2
tAd-g	176	-56	-33	-179	-9	28	-37	31	-14	57	1.52	1.85	2.40	0.5	1.50	1.83	2.39	0.5
tAd-t	176	-56	-32	-179	-9	29	-37	31	-14	-171	1.91	2.26	2.84	0.2	1.95	2.30	2.90	0.2
tAu-gm	176	-48	-39	-178	8	-28	38	-33	16	-62	0.45	0.52	0.77	8.0	0.47	0.54	0.79	7.5
tAu-g	178	-50	-38	-178	7	-28	39	-34	17	58	1.62	1.55	1.23	3.7	1.51	1.44	1.13	4.2
tAu-t	178	-50	-39	-178	6	-28	39	-34	17	177	0.42	0.43	0.45	13.8	0.45	0.46	0.48	12.6
tFd-gm	175	-61	155	177	-12	30	-38	30	-12	-74	1.60	1.75	1.78	1.5	1.45	1.59	1.63	1.8
tFd-g	175	-60	154	177	-11	30	-37	30	-12	57	1.10	1.46	1.75	1.5	0.95	1.31	1.62	1.9
tFu-gm	179	-54	146	176	6	-28	38	-34	17	-63	0.05	0.02	0.00	29.3	0.04	0.02	0.00	28.6
tFu-g	179	-54	146	176	6	-27	38	-34	18	56	1.19	1.20	1.27	3.5	1.08	1.10	1.17	4.0
tFu-t	179	-55	147	176	6	-28	39	-34	18	177	0.00	0.00	0.05	26.7	0.00	0.00	0.06	25.7
ts1	119	-106	56	180	9	-32	41	-37	17	77	21.64	20.51	21.84		21.91	20.77	22.11	
ts2	-69	-86	22	177	26	-40	39	-23	-2	-63	22.01	21.33	22.23		22.40	21.72	22.63	
ts3	119	-88	-10	-178	27	-41	40	-24	-2	-64	23.09	21.72	22.76		23.06	21.69	22.73	
ts4	-60	-109	72	-175	6	20	-38	42	-30	-73	23.44	22.43	22.58		23.64	22.63	22.78	
cis%														11.2				12.9

Table S16 Torsion angles (°) and thermodynamic properties (kcal mol⁻¹) of local minima and transition states of Ac-Hyp-OMe in water

^a Torsion angles are defined in Fig. 1. Optimized at the SMD M06-2X/6-31+G(d) level of theory in water. ^b Single-point energies by the DSD-PBEP86-D3BJ/cc-pVTZ method. ^c

Single-point energies by the M06-2X/def2-TZVP method. ^{*d*} Relative electronic energies. ^{*e*} Relative enthalpies at 25 °C. ^{*f*} Relative Gibbs free energies at 25 °C and 1 atm. ^{*g*} Population (%) of *cis* conformers calculated using ΔG values. ^{*h*} "gm" stands for the gauche- for χ^{OH} .

Conf					Torsion	angles					DSD-I	PBEP86-	D3BJ/cc-	-pVTZ	Μ	06-2X/d	ef2-TZVI	2
Coni.	ω	ϕ	ψ	ω	χ^0	χ^1	χ^2	χ^3	χ^4	$\chi^{ m OH}$	$\Delta E_{ m e}{}^d$	ΔH^e	ΔG^{f}	w^g	$\Delta E_{\rm e}{}^d$	ΔH^e	ΔG^{f}	w ^g
cAd-g ^h	-3	-82	15	-178	-23	38	-40	27	-2	66	3.02	2.76	2.28	1.3	2.85	2.58	2.11	1.7
cAd-gm ⁱ	5	-67	-30	-177	-4	25	-36	33	-18	-63	3.34	3.30	2.76	0.6	3.30	3.25	2.71	0.6
cAd-t	-3	-80	9	-178	-20	37	-40	28	-5	-171	3.24	2.99	2.65	0.7	3.03	2.78	2.44	1.0
cAu-g	-3	-57	-32	-177	3	-25	38	-35	21	76	5.46	5.15	4.07	0.1	5.36	5.06	3.97	0.1
cAu-gm	-3	-56	-33	-178	3	-25	37	-35	20	-62	5.59	5.27	4.13	0.1	5.38	5.06	3.92	0.1
cAu-t	-3	-58	-32	-177	1	-24	38	-36	22	171	5.37	5.11	4.12	0.1	5.24	4.98	3.99	0.1
cFd-g	-3	-80	-164	-178	-23	38	-40	26	-2	68	3.37	2.97	2.13	1.7	3.24	2.84	2.00	2.0
cFd-gm	5	-69	144	177	-5	26	-37	34	-18	-58	2.08	1.98	0.83	15.3	1.99	1.89	0.74	16.9
cFd-t	-3	-78	-169	-180	-21	37	-40	28	-4	-167	3.06	2.70	2.03	2.0	2.75	2.39	1.72	3.2
cFu-g	-1	-60	163	177	3	-25	38	-36	21	76	5.33	5.18	3.77	0.1	5.28	5.12	3.72	0.1
cFu-gm	-2	-60	158	176	3	-25	37	-35	20	-60	5.28	5.13	3.88	0.1	5.14	5.00	3.74	0.1
cFu-t	-2	-61	164	177	1	-25	38	-37	22	172	5.20	5.03	3.62	0.1	5.12	4.94	3.53	0.2
tAd-g	179	-81	12	-180	-21	37	-40	28	-4	65	3.04	2.74	2.14	1.7	2.89	2.59	1.99	2.0
tAd-gm	-180	-55	-37	-179	2	21	-36	36	-25	-54	1.76	1.77	1.75	3.3	1.84	1.86	1.84	2.7
tAd-t	179	-77	5	180	-18	35	-40	29	-7	-174	3.46	3.16	2.62	0.8	3.34	3.04	2.50	0.9
tAu-g ^h	178	-53	-36	-179	3	-25	38	-36	21	75	4.02	3.80	2.41	1.1	3.98	3.77	2.37	1.1
tAu-gm ^h	178	-53	-36	-179	2	-25	37	-35	21	-56	4.17	4.08	3.12	0.3	4.07	3.99	3.02	0.4
tAu-t ^h	178	-53	-36	-179	1	-24	38	-36	22	167	4.09	3.96	2.91	0.5	4.09	3.96	2.91	0.4
tFd-g ^h	177	-76	-176	-179	-19	35	-38	27	-5	68	3.44	3.17	2.20	1.5	3.45	3.18	2.21	1.4
tFd-gm	179	-57	139	178	0	24	-37	36	-23	-51	0.00	0.00	0.00	62.6	0.00	0.00	0.00	59.0
tFd-t ^h	177	-76	-178	-180	-18	35	-39	28	-6	-171	3.38	3.14	2.31	1.3	3.27	3.04	2.21	1.4
tFu-g ^h	179	-55	143	179	5	-27	39	-35	19	74	3.74	3.51	2.17	1.6	3.73	3.50	2.16	1.5
tFu-gm ^h	179	-55	143	179	4	-26	38	-35	20	-55	3.70	3.53	2.39	1.1	3.61	3.45	2.30	1.2
tFu-t ^h	179	-56	144	178	2	-25	38	-36	21	168	3.79	3.53	1.99	2.2	3.82	3.56	2.02	1.9
ts1	115	-109	34	176	3	23	-39	41	-27	-173	23.31	21.87	21.60		23.50	22.06	21.80	
ts2	117	-104	68	-177	10	-32	41	-36	16	171	24.17	22.85	22.29		24.54	23.22	22.66	
ts3	-65	-113	16	178	-5	29	-41	39	-22	-168	25.78	24.27	23.75		25.77	24.25	23.73	
ts4	-69	-86	79	-175	24	-39	40	-25	1	171	26.70	25.33	24.83		26.94	25.58	25.08	
cis%														22.2				26.0

Table S17 Torsion angles (°) and thermodynamic properties (kcal mol⁻¹) of local minima and transition states of Ac-hyp-OMe in chloroform

^{*a*} Torsion angles are defined in Fig. 1. Optimized at the PCM M06-2X/6-31+G(d) level of theory in chloroform. ^{*b*} Single-point energies by the DSD-PBEP86-D3BJ/cc-pVTZ method. ^{*c*} Single-point energies by the M06-2X/def2-TZVP method. ^{*d*} Relative electronic energies. ^{*e*} Relative enthalpies at 25 °C. ^{*f*} Relative Gibbs free energies at 25 °C and 1 atm. ^{*g*} Population (%) of *cis* conformers calculated using ΔG values. ^{*h*} Vibrational frequencies were calculated with the option Int = Ultrafine. ^{*i*} "gm" stands for the gauche- for χ^{OH} .

Conf					Torsion	angles					DSD-	PBEP86-	D3BJ/cc-	pVTZ	Μ	[06-2X/d	ef2-TZVI	2
Com.	ď	ϕ	ψ	ω	χ^0	χ^1	χ ²	χ^3	χ^4	$\chi^{\rm OH}$	$\Delta E_{ m e}{}^d$	ΔH^e	ΔG^{f}	w^g	$\Delta E_{\rm e}^{\ d}$	ΔH^e	ΔG^{f}	w ^g
cAd-g	-3	-81	9	179	-21	37	-40	27	-4	61	1.79	1.59	2.76	0.2	1.81	1.60	2.90	0.1
cAd-gm ^h	-6	-67	-23	-177	-17	31	-34	24	-5	-66	2.32	1.04	0.39	8.3	2.20	0.91	0.39	9.2
cAd-t	-4	-78	6	179	-20	36	-39	27	-4	-173	1.78	1.33	0.69	5.0	1.62	1.16	0.65	5.9
cAu-g	-6	-53	-32	-178	3	-25	38	-36	21	74	3.89	3.49	2.57	0.2	3.66	3.25	2.46	0.3
cAu-gm	-7	-53	-32	-178	2	-24	37	-35	21	-57	3.70	3.73	2.99	0.1	3.57	3.59	2.98	0.1
cAu-t	-7	-53	-31	-178	1	-24	37	-36	22	170	4.01	3.76	2.58	0.2	3.84	3.58	2.53	0.2
cFd-g	-7	-76	-174	-179	-22	37	-38	25	-1	64	1.30	1.45	1.46	1.4	1.23	1.38	1.52	1.4
cFd-gm	0	-68	149	175	-9	28	-36	30	-14	-60	1.43	0.65	0.58	6.0	1.43	0.64	0.70	5.4
cFd-t	-7	-75	-174	-180	-22	37	-39	26	-2	-172	1.40	0.97	0.91	3.4	1.16	0.73	0.80	4.6
cFu-g	-5	-58	161	176	4	-26	38	-36	20	74	3.45	3.10	2.68	0.2	3.29	2.94	2.65	0.2
cFu-gm	-6	-57	164	176	3	-25	38	-35	21	-58	3.17	2.58	2.85	0.1	3.17	2.57	2.98	0.1
cFu-t	-6	-59	163	176	2	-25	38	-36	22	173	3.55	3.42	2.62	0.2	3.49	3.35	2.68	0.2
tAd-g	179	-75	6	180	-19	36	-40	29	-6	62	1.64	1.08	1.49	1.3	1.76	1.20	1.74	0.9
tAd-gm	176	-53	-37	-176	-2	23	-35	33	-20	-54	0.98	0.89	0.98	3.1	0.81	0.72	0.94	3.6
tAd-t	-180	-74	5	-179	-15	34	-40	31	-10	-174	1.39	0.83	0.00	15.9	1.27	0.69	0.00	17.7
tAu-g	179	-52	-38	-179	5	-27	39	-36	19	72	2.45	1.94	1.10	2.5	2.39	1.88	1.17	2.5
tAu-gm	178	-52	-38	-179	5	-27	39	-35	19	-58	2.29	2.28	1.22	2.0	2.28	2.26	1.33	1.9
tAu-t	178	-52	-37	-179	4	-26	39	-36	20	170	2.48	2.18	1.09	2.5	2.52	2.21	1.25	2.1
tFd-g	179	-71	-180	179	-13	32	-39	31	-11	63	0.87	0.00	0.03	15.0	0.88	0.00	0.17	13.3
tFd-gm	175	-55	143	176	-4	25	-37	33	-19	-54	0.00	0.26	0.39	8.2	0.00	0.25	0.52	7.4
tFd-t	180	-71	-179	179	-13	32	-39	31	-11	-175	0.79	0.39	0.29	9.8	0.72	0.31	0.35	9.9
tFu-g	-179	-54	145	176	8	-29	40	-34	16	74	2.01	1.49	0.68	5.1	1.94	1.42	0.73	5.1
tFu-gm	-179	-53	144	177	8	-29	39	-34	16	-57	1.78	1.77	0.68	5.0	1.78	1.77	0.81	4.5
tFu-t	180	-53	143	177	8	-29	40	-35	17	171	2.04	1.78	0.79	4.2	2.09	1.82	0.97	3.4
ts1	118	-116	27	177	-3	28	-42	40	-24	-172	23.14	21.41	21.65		23.28	21.53	21.91	
ts2	119	-90	-7	-179	24	-40	41	-27	2	173	24.66	23.26	23.54		24.99	23.58	24.00	
ts3	-64	-114	30	176	-3	27	-40	39	-23	-174	22.78	21.30	21.96		22.84	21.34	22.14	
ts4	-67	-91	54	179	22	-39	40	-27	3	175	24.16	22.94	23.57		24.27	23.03	23.80	
cis%														25.3				27.7

Table S18 Torsion angles (°) and thermodynamic properties (kcal mol⁻¹) of local minima and transition states of Ac-hyp-OMe in water

Conf	$\frac{1}{1}$									DSD-	PBEP86-	D3BJ/cc-p	VTZ	Ν	406-2X/de	ef2-TZVP	
Com.	ω	ϕ	Ψ	ω	χ^0	χ^1	χ^2	χ^3	χ^4	$\Delta E_{\rm e}^{\ d}$	ΔH^e	ΔG^{f}	w^{g}	$\Delta E_{ m e}{}^d$	ΔH^e	ΔG^{f}	w ^g
cAd	-10	-67	-16	-180	-22	34	-35	21	1	3.58	3.58	3.17	0.3	3.54	3.54	3.14	0.3
cAu	-5	-53	-33	-180	5	-25	36	-32	17	1.98	1.99	1.94	2.5	1.75	1.76	1.71	3.6
cFd	-11	-70	167	178	-25	35	-33	19	4	3.05	3.01	2.72	0.7	3.00	2.96	2.66	0.7
cFu	-5	-57	165	175	4	-25	36	-33	18	1.40	1.50	1.78	3.2	1.27	1.37	1.65	4.0
tAd	175	-55	-34	-178	-10	28	-37	30	-13	2.75	2.89	3.07	0.4	2.77	2.90	3.09	0.3
tAu	178	-50	-39	-178	7	-27	37	-32	16	0.41	0.41	0.50	27.6	0.45	0.45	0.54	25.7
tFd	174	-59	153	177	-13	30	-37	29	-10	2.31	2.38	2.47	1.0	2.18	2.25	2.34	1.2
tFu	179	-55	147	176	6	-26	37	-33	17	0.00	0.00	0.00	64.4	0.00	0.00	0.00	64.1
ts1'	118	-92	-169	-178	22	-38	39	-27	3	21.47	20.33	21.23		21.59	20.45	21.36	
ts2	117	-87	75	-174	27	-41	39	-23	-2	21.64	20.66	21.85		21.95	20.97	22.15	
ts4	-65	-90	52	180	23	-38	38	-24	0	21.88	20.87	21.74		22.01	21.00	21.87	
cis%													6.6				8.6

Table S19 Torsion angles (°) and thermodynamic properties (kcal mol⁻¹) of local minima and transition states of Ac-Flp-OMe in water

Conf				Tors	sion angles					DSD-	PBEP86-	D3BJ/cc-p	VTZ	Ν	106-2X/de	ef2-TZVP	
Com.	ω	ϕ	Ψ	ω	χ^0	χ^1	χ ²	χ^3	χ^4	$\Delta E_{\rm e}^{\ d}$	ΔH^e	ΔG^{f}	w ^g	$\Delta E_{ m e}{}^d$	ΔH^e	ΔG^{f}	w^{g}
cAd	-8	-75	-1	-178	-25	37	-36	21	3	1.08	1.10	1.35	6.0	0.98	1.00	1.24	6.9
cAu	-7	-53	-32	-178	2	-24	37	-35	21	4.29	4.50	3.94	0.1	4.12	4.33	3.78	0.1
cFd	-2	-76	177	179	-17	33	-37	26	-5	0.50	0.53	0.66	19.2	0.47	0.49	0.62	19.5
cFu	-7	-57	165	176	2	-24	37	-35	21	3.87	4.24	4.69	0.0	3.78	4.16	4.60	0.0
tAd	175	-67	-7	-179	-18	33	-37	25	-4	0.71	0.71	0.83	14.3	0.64	0.64	0.77	15.3
tAu	178	-53	-36	-179	3	-25	38	-36	20	2.88	3.05	2.85	0.5	2.87	3.05	2.85	0.5
tFd	177	-67	172	178	-14	31	-37	28	-9	0.00	0.00	0.00	58.2	0.00	0.00	0.00	56.0
tFu	-180	-53	143	177	8	-29	39	-33	15	2.42	2.55	2.09	1.7	2.42	2.55	2.09	1.7
ts2	116	-75	69	-173	41	-20	-8	33	-47	21.29	20.39	21.89		21.46	20.56	22.06	
ts3	-62	-106	65	-177	7	17	-35	39	-29	21.68	20.82	21.84		21.95	21.09	22.11	
ts4'	-60	-111	173	179	2	21	-37	38	-25	21.46	20.54	21.40		21.84	20.93	21.79	
cis%													25.3				26.5

Table S20 Torsion angles (°) and thermodynamic properties (kcal mol⁻¹) of local minima and transition states of Ac-flp-OMe in water

Conf				Tors	sion angles	5				DSD-	PBEP86-	D3BJ/cc-p	VTZ	Ν	106-2X/de	ef2-TZVP	
Com.	ø	ϕ	Ψ	ω	χ^0	χ^1	χ^2	χ^3	χ^4	$\Delta E_{\rm e}^{\ d}$	ΔH^e	ΔG^{f}	w ^g	$\Delta E_{\rm e}^{\ d}$	ΔH^e	ΔG^{f}	w^g
cAd	-4	-72	-16	-178	-17	34	-38	28	-7	1.27	1.45	2.05	1.5	1.36	1.54	2.14	1.4
cAu	-5	-53	-32	-180	5	-28	39	-35	19	2.48	2.64	3.04	0.3	2.33	2.49	2.88	0.4
cFd^h	-2	-75	169	178	-16	33	-38	28	-8	0.70	0.74	0.17	36.4	0.74	0.78	0.21	35.5
cFu	-4	-56	161	176	6	-27	38	-34	18	1.95	2.21	2.99	0.3	1.94	2.20	2.99	0.3
tAd	177	-58	-30	-179	-10	29	-37	31	-14	0.38	0.72	1.44	4.2	0.49	0.82	1.55	3.7
tAu	178	-50	-39	-178	9	-29	39	-33	16	1.00	1.23	1.75	2.5	1.06	1.28	1.80	2.4
tFd	175	-61	156	177	-11	30	-38	31	-13	0.00	0.00	0.00	48.3	0.00	0.00	0.00	50.5
tFu	180	-54	146	176	7	-29	39	-34	17	0.57	0.74	1.20	6.4	0.65	0.82	1.27	5.9
ts1'	119	-75	65	-174	41	-18	-10	35	-47	22.28	21.50	22.87		22.59	21.81	23.18	
ts2	116	-86	77	-174	27	-41	39	-23	-2	23.17	22.35	24.05		23.48	22.66	24.37	
ts3	-62	-110	72	-175	5	21	-38	42	-29	21.91	20.93	21.64		22.26	21.27	21.98	
ts4	-65	-77	-88	176	32	-42	36	-17	-9	23.99	23.19	24.57		24.29	23.49	24.87	
cis%													38.5				37.6

Table S21 Torsion angles (°) and thermodynamic properties (kcal mol⁻¹) of local minima and transition states of Ac-mep-OMe in water

Conf				Tors	sion angles					DSD-	PBEP86-	D3BJ/cc-p	VTZ	Ν	106-2X/de	ef2-TZVP	
Com.	ø	ϕ	Ψ	ω	χ^0	χ^1	χ^2	χ^3	χ^4	$\Delta E_{ m e}{}^d$	ΔH^e	ΔG^{f}	w ^g	$\Delta E_{\rm e}^{\ d}$	ΔH^e	ΔG^{f}	w^g
cAd	-3	-79	6	-179	-20	34	-35	23	-2	2.44	2.41	2.44	0.8	2.26	2.23	2.26	1.0
cAu	-8	-52	-31	-179	3	-25	38	-35	21	1.84	1.97	2.43	0.8	1.63	1.76	2.22	1.1
cFd	-1	-77	-176	-179	-17	32	-35	25	-5	2.03	2.00	1.76	2.5	1.78	1.75	1.51	3.7
cFu	-4	-59	161	176	4	-26	39	-36	21	1.34	1.43	1.59	3.4	1.30	1.39	1.55	3.4
tAd	-178	-75	5	-179	-14	31	-37	28	-9	1.96	1.90	1.91	1.9	1.73	1.68	1.69	2.8
tAu	178	-50	-39	-179	6	-27	39	-35	19	0.44	0.41	0.13	39.2	0.44	0.41	0.13	37.8
tFd	-178	-67	168	178	-5	24	-34	31	-17	1.24	1.28	1.79	2.4	1.17	1.21	1.72	2.6
tFu	180	-52	144	177	8	-30	40	-34	16	0.00	0.00	0.00	49.0	0.00	0.00	0.00	47.5
ts1	115	-93	76	-172	21	6	-30	44	-41	22.99	22.00	23.23		23.39	22.39	23.63	
ts2	118	-97	70	-174	18	-38	43	-32	9	22.80	21.83	23.17		23.11	22.15	23.49	
ts3	-63	-106	45	179	4	22	-38	41	-29	22.94	21.80	22.83		22.93	21.79	22.81	
ts4	-59	-91	-60	-180	22	-39	41	-28	4	23.05	21.94	22.42		23.39	22.29	22.76	
cis%													7.5				9.3

Table S22 Torsion angles (°) and thermodynamic properties (kcal mol⁻¹) of local minima and transition states of Ac-Mep-OMe in water

Conf	Torsion angles									DSD-	PBEP86-	D3BJ/cc-p	VTZ	Ν	106-2X/de	ef2-TZVP	
Com.	ø	ϕ	Ψ	ω	χ^0	χ^1	χ^2	χ^3	χ^4	$\Delta E_{\rm e}^{\ d}$	ΔH^e	ΔG^{f}	w ^g	$\Delta E_{ m e}{}^d$	ΔH^e	ΔG^{f}	w^g
cAd	-9	-68	-12	180	-19	36	-40	28	-5	2.61	2.69	3.01	0.4	2.66	2.74	3.06	0.4
cAu	-4	-55	-32	180	4	-26	38	-35	20	1.56	1.65	1.96	2.4	1.42	1.51	1.82	3.1
cFd	-4	-74	168	178	-18	34	-39	29	-7	1.87	2.10	2.29	1.4	1.85	2.08	2.26	1.4
cFu^h	-2	-59	159	176	4	-25	37	-34	19	1.17	1.27	1.77	3.3	1.11	1.21	1.71	3.7
tAd	173	-58	-29	-179	-14	32	-39	30	-10	1.68	1.82	2.67	0.7	1.82	1.97	2.82	0.6
tAu	178	-52	-38	-179	4	-26	38	-34	19	0.28	0.32	0.66	21.6	0.34	0.37	0.72	19.8
tFd	175	-60	156	176	-10	31	-40	33	-14	1.13	1.28	1.60	4.4	1.07	1.23	1.54	4.9
tFu	177	-54	148	176	3	-25	37	-34	20	0.00	0.00	0.00	65.7	0.00	0.00	0.00	66.2
ts1'	121	-75	65	-176	43	-20	-9	35	-48	22.32	21.39	22.24		22.63	21.70	22.55	
ts2	117	-85	74	-174	28	-41	38	-21	-4	21.91	20.86	22.34		22.05	21.00	22.48	
ts3	-60	-104	76	-177	10	18	-38	44	-34	22.36	21.51	22.50		22.76	21.91	22.90	
ts4	-62	-83	-180	-179	30	-41	36	-19	-7	21.67	20.78	22.38		21.74	20.85	22.45	
cis%													7.5				8.6

Table S23 Torsion angles (°) and thermodynamic properties (kcal mol⁻¹) of local minima and transition states of Ac-Clp-OMe in water

Conf				Tors	sion angles					DSD-	PBEP86-	D3BJ/cc-p	VTZ	Ν	106-2X/de	ef2-TZVP	
Com.	ø	ϕ	Ψ	ω	χ^0	χ^1	χ ²	χ^3	χ^4	$\Delta E_{\rm e}^{\ d}$	ΔH^e	ΔG^{f}	w^g	$\Delta E_{\rm e}{}^d$	ΔH^e	ΔG^{f}	w^{g}
cAd	2	-83	10	-180	-16	33	-37	27	-7	0.88	0.84	0.94	7.5	0.87	0.83	0.93	8.1
cAu	-6	-55	-33	-178	0	-24	39	-38	24	2.60	3.03	3.09	0.2	2.76	3.19	3.25	0.2
cFd	1	-80	-172	-178	-17	32	-37	26	-6	0.54	0.42	0.25	24.1	0.47	0.36	0.18	28.4
cFu	-6	-58	168	177	3	-26	39	-37	22	2.24	2.44	1.70	2.1	2.51	2.70	1.96	1.4
tAd	-178	-76	7	-179	-13	31	-38	30	-11	0.45	0.50	0.89	8.1	0.32	0.38	0.76	10.7
tAu	179	-54	-35	-179	2	-26	40	-38	23	1.12	1.42	1.55	2.7	1.45	1.75	1.88	1.6
tFd	-179	-74	-173	-179	-12	30	-37	29	-10	0.00	0.00	0.00	36.5	0.00	0.00	0.00	38.7
tFu	-179	-57	149	177	6	-29	41	-37	19	0.76	0.92	0.39	18.9	1.12	1.28	0.75	10.9
ts1	119	-73	65	-174	44	-24	-4	30	-46	21.30	20.51	21.31		21.89	21.11	21.90	
ts2	118	-103	42	177	11	-34	43	-37	16	22.49	21.70	22.79		23.01	22.22	23.30	
ts3	-62	-105	38	176	6	19	-36	40	-29	21.11	19.44	21.62		21.50	19.82	22.00	
ts4	-62	-84	-96	175	26	-42	43	-28	1	23.07	22.37	23.06		23.77	23.07	23.76	
cis%													33.8				38.1

Table S24 Torsion angles (°) and thermodynamic properties (kcal mol⁻¹) of local minima and transition states of Ac-clp-OMe in water

Conf					Torsion	angles					DSD-I	PBEP86-	D3BJ/cc-	pVTZ	Μ	06-2X/d	ef2-TZVI	P
Com.	ď	ϕ	Ψ	ω	χ^0	χ^1	χ^2	χ^{3}	χ^4	$\chi^{ m OH}$	$\Delta E_{\rm e}{}^d$	ΔH^e	ΔG^{f}	w^g	$\Delta E_{\rm e}^{\ d}$	ΔH^e	ΔG^{f}	w^g
cAd-gm ^h	-8	-70	-10	180	-20	36	-39	27	-4	-72	2.13	2.09	2.63	0.6	2.31	2.27	2.68	0.5
cAd-g	-8	-69	-12	-180	-19	35	-39	28	-5	57	1.50	1.48	2.59	0.6	1.60	1.59	2.56	0.6
cAd-t	-8	-69	-11	-180	-19	35	-39	28	-5	-180	2.22	2.16	2.55	0.7	2.39	2.33	2.59	0.6
cAu-gm	-4	-55	-30	-179	4	-26	38	-35	19	-63	2.13	2.08	3.34	0.2	2.13	2.07	3.20	0.2
cAu-g	-5	-55	-32	-180	2	-26	39	-37	22	60	2.43	2.48	4.04	0.1	2.39	2.44	3.86	0.1
cAu-t	-4	-55	-31	-180	3	-26	38	-35	20	171	2.19	2.23	3.70	0.1	2.19	2.24	3.57	0.1
cFd-gm	-3	-75	169	178	-18	35	-39	28	-6	-69	1.40	0.81	2.45	0.8	1.51	0.92	2.43	0.8
cFd-g	-2	-75	168	178	-16	34	-39	29	-8	58	0.75	0.76	1.68	2.8	0.79	0.80	1.60	3.3
cFd-t	-1	-76	168	178	-16	34	-39	30	-8	-175	1.48	1.59	2.90	0.4	1.57	1.67	2.86	0.4
cFu-gm ^{h,i}	-3	-58	160	176	5	-27	38	-34	18	-57	1.68	1.88	1.05	8.3	1.79	1.98	1.03	8.5
cFu-g	-4	-58	161	176	3	-26	38	-36	21	61	2.02	2.12	3.46	0.1	2.10	2.20	3.41	0.2
cFu-t	-4	-58	161	176	3	-25	36	-34	19	167	1.84	1.91	2.64	0.6	1.93	1.99	2.59	0.6
tAd-gm	176	-55	-35	-179	-7	28	-38	34	-17	-72	1.43	0.86	2.82	0.4	1.66	1.08	2.92	0.3
tAd-g	176	-55	-35	-179	-7	27	-38	34	-17	57	0.55	0.58	1.95	1.8	0.71	0.74	1.98	1.7
tAd-t	176	-54	-36	-179	-5	27	-39	35	-19	179	1.21	1.25	2.39	0.9	1.45	1.49	2.50	0.7
tAu-gm	179	-52	-37	-179	4	-26	38	-35	20	-62	0.86	0.86	2.24	1.1	1.04	1.05	2.29	1.0
tAu-g	178	-53	-37	-179	2	-25	39	-37	22	56	1.13	0.51	2.62	0.6	1.23	0.62	2.59	0.6
tAu-t	178	-52	-37	-179	3	-25	37	-35	20	170	0.83	0.88	2.20	1.2	1.02	1.07	2.26	1.1
tFd-gm	176	-61	157	176	-11	31	-39	32	-13	-73	0.86	0.22	2.00	1.7	0.93	0.28	1.94	1.8
tFd-g	176	-61	156	176	-11	30	-39	32	-14	57	0.00	0.00	1.16	6.8	0.00	0.00	1.03	8.5
tFu-gm	178	-55	151	175	5	-27	38	-34	18	-55	0.61	0.42	0.00	48.6	0.74	0.55	0.00	48.1
tFu-g	177	-55	150	176	2	-25	38	-36	22	52	0.76	0.71	1.60	3.2	0.86	0.81	1.57	3.4
tFu-t	177	-55	149	176	3	-25	37	-34	20	170	0.53	0.37	0.57	18.6	0.71	0.55	0.62	17.0
ts1'	114	-93	66	-175	20	-38	41	-29	6	76	22.41	21.50	24.47		22.73	21.82	24.66	
ts2	118	-84	-5	-180	30	-42	37	-20	-6	-62	22.94	21.99	24.66		23.36	22.41	24.95	
ts4	-73	-87	47	177	22	-37	38	-25	2	-61	23.51	22.46	24.25		23.51	22.46	24.11	
ts3	-60	-106	76	-177	8	19	-38	43	-32	-68	22.40	21.43	22.54		22.88	21.91	22.89	
cis%														15.1				15.9

Table S25 Torsion angles (°) and thermodynamic properties (kcal mol⁻¹) of local minima and transition states of Ac-mpc-OMe in chloroform

^a Torsion angles are defined in Fig. 1. Optimized at the PCM M06-2X/6-31+G(d) level of theory in chloroform. ^b Single-point energies by the DSD-PBEP86-D3BJ/cc-pVTZ

method. ^{*c*} Single-point energies by the M06-2X/def2-TZVP method. ^{*d*} Relative electronic energies. ^{*e*} Relative enthalpies at 25 °C. ^{*f*} Relative Gibbs free energies at 25 °C and 1 atm. ^{*g*} Population (%) of *cis* conformers calculated using ΔG values. ^{*h*} "gm" stands for the gauche- for χ^{OH} . ^{*i*} Vibrational frequencies were calculated with the option Int = Ultrafine.

Conf					Torsion	angles					DSD-I	PBEP86-	D3BJ/cc-	pVTZ	Μ	06-2X/d	ef2-TZVI	2
Coni.	ω'	ϕ	ψ	ω	χ^0	χ^1	χ ²	χ^3	χ^4	$\chi^{ m OH}$	$\Delta E_{\rm e}{}^d$	ΔH^e	ΔG^{f}	w^g	$\Delta E_{\rm e}^{\ d}$	ΔH^{e}	ΔG^{f}	w ^g
cAd-gm ^h	0	-79	2	-177	-16	33	-38	27	-7	-82	2.21	2.31	3.51	0.1	1.94	2.03	3.23	0.1
cAd-g	0	-82	12	-180	-18	34	-37	26	-5	60	1.65	1.60	2.18	0.9	1.32	1.27	1.85	1.5
cAd-t	0	-83	15	179	-18	34	-37	26	-5	-165	2.03	1.99	2.77	0.3	1.73	1.69	2.47	0.5
cAu-gm	-5	-55	-33	-178	1	-25	38	-37	23	-58	1.83	2.08	2.75	0.3	1.66	1.91	2.58	0.4
cAu-g	-5	-55	-33	-177	2	-25	39	-37	22	67	2.62	2.98	3.51	0.1	2.50	2.86	3.39	0.1
cAu-t	-6	-55	-33	-178	0	-24	39	-38	24	175	2.47	2.68	3.01	0.2	2.37	2.58	2.92	0.2
cFd-gm	1	-78	-176	179	-15	32	-38	29	-9	-85	1.95	1.88	2.41	0.6	1.48	1.42	1.95	1.3
cFd-g	0	-81	-170	-177	-19	34	-36	25	-4	60	1.23	1.08	1.33	3.8	0.89	0.73	0.98	6.4
cFd-t	1	-82	-168	-177	-18	33	-36	25	-4	-165	1.78	1.80	2.14	1.0	1.45	1.47	1.81	1.6
cFu-gm	-5	-57	165	176	5	-27	39	-36	19	-61	1.48	1.62	1.38	3.5	1.39	1.53	1.29	3.8
cFu-g	-5	-56	165	176	6	-28	40	-36	19	68	2.19	2.37	2.27	0.8	2.19	2.38	2.28	0.7
cFu-t	-5	-57	166	177	3	-26	40	-37	21	176	2.12	2.23	1.20	4.7	2.11	2.22	1.19	4.5
tAd-gm	-178	-72	-1	-178	-10	29	-37	31	-14	-76	1.60	1.56	1.92	1.4	1.44	1.39	1.76	1.7
tAd-g	-177	-79	14	-179	-14	32	-38	30	-10	60	1.29	1.27	2.03	1.2	0.89	0.87	1.63	2.1
tAd-t	-176	-80	15	-179	-13	31	-38	30	-11	-164	1.53	1.64	2.82	0.3	1.19	1.30	2.49	0.5
tAu-gm	179	-53	-35	-179	3	-26	39	-37	21	-58	0.36	0.53	0.87	8.2	0.37	0.55	0.88	7.6
tAu-g	-180	-53	-35	-179	7	-29	41	-36	19	72	1.23	1.34	1.48	2.9	1.29	1.40	1.54	2.5
tAu-t	179	-53	-35	-179	3	-27	40	-38	22	174	0.93	1.17	1.85	1.6	1.00	1.24	1.92	1.3
tFd-gm	-178	-66	167	178	-2	23	-36	34	-21	-67	0.93	0.31	2.63	0.4	0.86	0.24	2.56	0.4
tFd-g	-179	-75	-170	-179	-15	32	-37	28	-8	57	0.93	0.86	1.69	2.1	0.64	0.58	1.40	3.2
tFd-t	-179	-75	-171	-178	-14	31	-36	28	-8	-165	1.28	1.15	1.63	2.3	1.07	0.94	1.41	3.1
tFu-gm	-179	-56	149	176	7	-29	40	-35	18	-59	0.00	0.00	0.00	35.6	0.00	0.00	0.00	33.6
tFu-g	-180	-56	148	177	7	-29	40	-35	18	70	0.82	0.81	0.67	11.5	0.90	0.90	0.75	9.4
tFu-t	-179	-56	149	177	6	-29	41	-37	19	178	0.63	0.64	0.47	16.2	0.71	0.72	0.55	13.3
ts1	117	-111	30	177	1	24	-39	40	-26	-164	22.39	21.18	22.70		22.47	21.27	22.78	
ts2	117	-103	42	177	11	-34	43	-37	16	-178	22.65	21.67	23.15		22.90	21.92	23.40	
ts3	-62	-107	36	176	4	21	-37	40	-27	-166	22.23	21.16	22.10		22.24	21.17	22.11	
ts4	-67	-92	65	-178	21	-39	42	-30	6	-177	22.48	21.51	22.16		22.76	21.79	22.44	
cis%														16.3				21.3

Table S26 Torsion angles (°) and thermodynamic properties (kcal mol⁻¹) of local minima and transition states of Ac-Mpc-OMe in chloroform

Conf					Torsion	angles					DSD-I	PBEP86-	D3BJ/cc-	pVTZ	Μ	06-2X/d	ef2-TZVI)
Coni.	ø	ϕ	ψ	ω	χ^0	χ^1	χ ²	χ^3	χ^4	$\chi^{\mathrm{OM}arepsilon}$	$\Delta E_{\rm e}^{\ d}$	ΔH^e	ΔG^{f}	w^g	$\Delta E_{\rm e}^{\ d}$	ΔH^{e}	ΔG^{f}	w ^g
cAd-g	-3	-83	17	-178	-23	39	-42	28	-3	72	0.00	0.19	0.52	9.9	0.00	0.00	0.28	11.9
$cAd-gm^h$	0	-79	7	-180	-17	24	-22	12	4	-57	4.99	5.56	6.92	0.0	4.10	4.48	5.79	0.0
cAd-t	-3	-80	9	-178	-21	38	-40	27	-4	172	0.44	0.60	0.71	7.2	0.67	0.64	0.70	5.9
cAu-g	-3	-56	-32	-178	3	-25	37	-35	20	70	2.68	2.86	2.14	0.7	2.58	2.57	1.80	0.9
cAu-gm	-1	-56	-34	-178	6	-28	39	-35	18	-48	5.26	5.72	5.89	0.0	5.01	5.28	5.41	0.0
cAu-t	-2	-57	-32	-177	3	-25	37	-35	20	177	2.57	2.77	2.66	0.3	2.47	2.48	2.31	0.4
cFd-g	-2	-82	-159	-180	-24	39	-41	27	-2	74	0.34	0.39	0.71	7.3	0.36	0.23	0.50	8.3
cFd-gm	1	-76	-172	-178	-14	23	-23	15	0	-56	4.74	5.17	6.09	0.0	3.65	3.89	4.76	0.0
cFd-t	-4	-77	-169	-179	-22	38	-39	26	-2	171	0.38	0.53	0.40	12.2	0.46	0.42	0.24	12.8
cFu-g	-1	-60	163	177	3	-25	37	-35	20	69	2.56	2.80	1.87	1.0	2.54	2.59	1.61	1.3
cFu-gm	-1	-59	158	176	5	-27	39	-36	19	-47	5.08	5.50	5.29	0.0	4.92	5.15	4.89	0.0
cFu-t	-2	-60	162	176	2	-24	37	-35	21	177	2.41	2.82	2.87	0.2	2.31	2.52	2.53	0.3
tAd-g	179	-83	16	-179	-21	38	-42	29	-5	70	0.10	0.27	0.57	9.2	0.09	0.07	0.32	11.2
tAd-gm	-174	-52	-39	180	24	-7	-11	24	-31	-64	4.98	4.59	6.40	0.0	4.71	4.14	5.90	0.0
tAd-t	179	-76	3	-179	-18	35	-39	28	-6	171	0.57	0.59	0.53	9.8	0.86	0.68	0.57	7.3
tAu-g	179	-54	-35	-180	4	-25	37	-35	20	70	1.20	1.37	0.79	6.4	1.20	1.18	0.54	7.7
tAu-gm	180	-53	-37	-180	7	-29	40	-35	18	-46	3.75	4.21	4.62	0.0	3.64	3.92	4.27	0.0
tAu-t	178	-53	-36	-179	3	-25	38	-35	20	176	1.32	1.60	1.71	1.3	1.29	1.38	1.44	1.7
tFd-g	178	-82	-165	-179	-22	38	-41	27	-3	73	0.50	0.00	1.05	4.1	0.71	0.02	1.01	3.5
tFd-gm	-179	-71	177	-179	-8	18	-22	17	-6	-56	4.42	4.80	4.82	0.0	3.50	3.69	3.66	0.0
tFd-t	176	-73	179	-180	-20	35	-37	25	-3	169	0.62	0.66	0.00	24.0	0.86	0.71	0.00	19.2
tFu-g	179	-56	145	178	4	-26	38	-35	20	69	0.93	1.21	1.05	4.1	0.94	1.04	0.82	4.8
tFu-gm	180	-56	143	178	5	-28	39	-36	19	-46	3.37	3.81	3.91	0.0	3.26	3.51	3.56	0.0
tFu-t	179	-57	145	178	3	-25	37	-35	21	177	1.00	1.39	1.42	2.2	0.97	1.16	1.15	2.8
ts1	114	-106	40	177	6	21	-39	43	-30	177	20.61	19.56	20.09		21.15	19.92	20.40	
ts2	115	-99	68	-178	14	-35	41	-32	11	176	21.50	20.62	20.93		21.85	20.78	21.04	
ts3	-64	-112	20	177	-3	28	-41	40	-23	180	23.13	22.26	23.02		23.45	22.39	23.11	
ts4	-69	-85	80	-175	24	-39	39	-25	0	176	23.78	22.93	23.19		24.00	22.96	23.17	
cis%														38.7				41.8

Table S27 Torsion angles (°) and thermodynamic properties (kcal mol⁻¹) of local minima and transition states of Ac-mop-OMe in chloroform

Carf					Torsion	angles					DSD-I	PBEP86-	D3BJ/cc-	pVTZ	Μ	06-2X/d	ef2-TZVI	2
Conf.	ø	ϕ	ψ	ω	χ^0	χ^1	χ^2	χ^3	χ^4	$\chi^{\mathrm{OM}arepsilon}$	$\Delta E_{\rm e}^{\ d}$	ΔH^e	ΔG^{f}	w^g	$\Delta E_{\rm e}^{\ d}$	ΔH^{e}	ΔG^{f}	w ^g
cAd-gm ^h	-8	-75	2	-177	-23	26	-20	6	12	-56	4.92	5.84	6.94	0.0	3.95	4.87	5.80	0.0
cAd-g	-3	-82	11	-176	-23	39	-41	28	-3	72	0.61	1.19	1.74	3.1	0.54	1.12	1.49	4.0
cAd-t	-6	-77	6	-180	-23	37	-39	25	-1	169	1.02	1.57	1.40	5.4	1.14	1.69	1.35	5.1
cAu-gm	-4	-52	-32	-179	8	-29	40	-34	16	-47	5.56	6.73	7.04	0.0	5.15	6.32	6.46	0.0
cAu-g	-2	-56	-31	-179	5	-26	38	-35	19	68	3.26	4.06	3.53	0.1	3.03	3.83	3.13	0.3
cAu-t	-7	-52	-31	-179	3	-25	37	-35	20	177	3.26	4.29	4.39	0.0	2.94	3.96	3.90	0.1
cFd-gm	-10	-72	-176	-179	-22	25	-20	7	10	-55	4.57	5.43	6.44	0.0	3.51	4.37	5.20	0.0
cFd-g	-3	-82	-163	178	-21	39	-42	29	-5	71	0.21	0.75	1.35	5.9	0.12	0.67	1.09	7.9
cFd-t	-3	-77	-175	180	-18	35	-39	28	-6	168	0.64	1.23	1.29	6.5	0.71	1.30	1.19	6.7
cFu-gm	-6	-56	164	177	5	-27	40	-36	20	-46	5.06	6.19	6.14	0.0	4.80	5.92	5.70	0.0
cFu-g	-5	-56	164	176	4	-26	37	-34	19	68	2.87	3.85	3.74	0.1	2.73	3.71	3.43	0.2
cFu-t	-7	-56	163	176	3	-25	38	-35	20	177	2.68	3.74	3.65	0.1	2.49	3.55	3.28	0.2
tAd-gm	-179	-72	2	-176	-13	22	-23	15	-1	-57	4.69	5.55	6.17	0.0	3.59	4.46	4.91	0.0
tAd-g	178	-76	8	-174	-20	38	-42	30	-7	72	0.45	1.03	1.54	4.3	0.32	0.89	1.23	6.3
tAd-t	178	-73	2	-179	-17	34	-40	29	-8	168	0.60	1.17	1.22	7.3	0.75	1.32	1.21	6.5
tAu-gm	179	-50	-38	-177	8	-29	40	-35	17	-46	4.00	5.17	5.39	0.0	3.79	4.95	5.01	0.0
tAu-g	180	-53	-37	-179	6	-28	39	-34	18	69	1.79	1.95	2.68	0.6	1.68	1.83	2.40	0.9
tAu-t	176	-50	-38	-178	3	-25	38	-35	20	176	1.72	2.49	1.87	2.4	1.60	2.38	1.59	3.4
tFd-gm	-178	-70	-180	180	-8	19	-22	17	-5	-56	4.13	4.88	4.96	0.0	3.13	3.88	3.78	0.1
tFd-g	177	-75	-167	178	-20	38	-42	30	-6	71	0.00	0.00	1.80	2.7	0.00	0.00	1.63	3.2
tFd-t	179	-70	177	179	-14	32	-38	29	-10	166	0.16	0.77	0.00	57.4	0.33	0.94	0.00	49.9
tFu-gm	-179	-54	146	175	11	-31	40	-34	14	-46	3.50	4.49	4.51	0.0	3.32	4.31	4.16	0.0
tFu-g	179	-52	142	178	7	-27	37	-33	17	69	1.41	2.28	2.03	1.9	1.35	2.22	1.79	2.4
tFu-t	-180	-56	147	177	6	-27	39	-34	18	178	1.24	2.16	1.97	2.0	1.13	2.05	1.69	2.9
ts1	118	-73	65	-175	45	-26	-1	29	-46	166	21.58	21.29	22.39		21.94	21.65	22.58	
ts2	117	-84	73	-174	31	-43	38	-20	-6	174	23.42	23.19	24.05		23.62	23.39	24.08	
ts3	-62	-109	56	179	4	21	-38	40	-28	168	22.06	21.70	21.21		22.48	22.11	21.46	
ts4	-64	-68	68	-177	46	-26	-2	30	-47	166	21.98	21.55	21.74		22.70	22.27	22.29	
cis%														21.3				24.4

Table S28 Torsion angles (°) and thermodynamic properties (kcal mol⁻¹) of local minima and transition states of Ac-mop-OMe in water

Conf				Tors	sion angles	5				DSD-	PBEP86-	D3BJ/cc-p	VTZ	Ν	106-2X/de	ef2-TZVP	
Com.	ω	ϕ	ψ	ω	χ^0	χ^1	χ ²	χ^3	χ^4	$\Delta E_{\rm e}^{\ d}$	ΔH^e	ΔG^{f}	w^g	$\Delta E_{ m e}{}^d$	ΔH^e	ΔG^{f}	w ^g
cAd	10	-76	-18	-178	-4	26	-38	35	-19	2.33	1.63	2.23	1.2	1.84	1.14	1.73	2.0
cAu	1	-60	-29	-176	11	-31	39	-32	13	2.43	2.54	2.07	1.5	1.90	2.01	1.54	2.8
cFd	-3	-66	155	176	-10	29	-38	32	-14	4.24	3.65	4.35	0.0	3.68	3.09	3.79	0.1
cFu	-5	-46	137	-180	12	-31	39	-31	12	4.06	4.08	3.59	0.1	3.50	3.51	3.03	0.2
tAd^{h}	-173	-70	-21	178	-1	24	-38	36	-22	1.56	1.52	0.71	15.1	1.38	1.34	0.53	15.5
tAu ^h	-175	-59	-30	179	11	-31	39	-32	13	1.54	1.47	0.85	11.9	1.26	1.20	0.58	14.4
tCd	-172	-80	55	178	-13	33	-42	33	-13	0.00	0.00	0.00	50.2	0.00	0.00	0.00	38.1
tCu^h	-174	-71	53	176	1	-25	40	-38	23	1.71	1.81	1.52	3.9	1.91	2.00	1.72	2.1
tFd	177	-58	141	-179	-4	25	-36	33	-19	1.94	1.94	1.28	5.8	1.50	1.50	0.85	9.1
tFu	176	-52	133	-176	5	-27	39	-35	19	1.57	1.53	0.94	10.2	1.16	1.11	0.53	15.6
ts1	125	-129	9	179	-13	34	-42	34	-13	19.24	18.10	18.61		19.33	18.19	18.70	
ts2	126	-159	24	177	-36	24	-2	-20	35	18.98	17.79	18.08		19.13	17.95	18.23	
ts3	-57	-119	12	178	-10	32	-41	35	-15	21.05	19.99	20.65		20.70	19.64	20.30	
ts4	-61	-69	-15	-177	41	-41	28	-3	-25	21.97	21.06	21.69		21.57	20.67	21.30	
cis%													2.8				5.2

Table S29 Torsion angles (°) and thermodynamic properties (kcal mol⁻¹) of local minima and transition states of Ac-(2-Mep)-NHMe in chloroform

Conf				Tors	sion angles					DSD-	PBEP86-	D3BJ/cc-p	VTZ	Ν	106-2X/de	ef2-TZVP	
Com.	ø	ϕ	Ψ	ω	χ^0	χ^1	χ^2	χ^3	χ^4	$\Delta E_{\rm e}^{\ d}$	ΔH^e	ΔG^{f}	W^g	$\Delta E_{ m e}{}^d$	ΔH^e	ΔG^{f}	w^g
cAd	3	-74	-17	-178	-10	29	-38	31	-13	2.39	2.38	2.50	0.8	2.15	2.14	2.26	1.3
cAu	-5	-57	-30	-176	6	-28	39	-35	18	2.77	2.70	2.29	1.1	2.57	2.50	2.09	1.7
cFd	-4	-67	160	175	-12	31	-38	29	-11	2.30	1.74	3.36	0.2	2.15	1.58	3.21	0.3
cFu	-6	-47	148	178	14	-33	40	-31	11	1.95	2.24	3.34	0.2	1.90	2.19	3.29	0.2
tAd	-178	-64	-27	-176	-3	24	-37	34	-20	0.78	0.79	0.81	13.9	0.90	0.91	0.93	11.9
tAu	179	-53	-38	180	7	-29	40	-35	17	0.67	0.54	0.74	15.8	0.79	0.66	0.86	13.5
tCd	-171	-81	42	175	-14	34	-42	33	-12	1.97	1.89	2.47	0.8	2.18	2.10	2.68	0.6
tFd	178	-56	146	178	-2	24	-36	34	-20	0.50	0.55	0.88	12.3	0.48	0.53	0.87	13.3
tFu	176	-51	143	178	8	-29	40	-34	17	0.00	0.00	0.00	54.8	0.00	0.00	0.00	57.3
ts1	124	-118	10	177	-4	29	-42	39	-22	21.39	20.33	22.19		21.86	20.80	22.65	
ts2	127	-157	18	178	-35	23	-2	-19	34	21.54	20.49	21.95		21.97	20.92	22.38	
ts3	-51	-136	10	180	-18	36	-40	29	-7	22.32	21.38	23.30		22.50	21.56	23.48	
ts4	-60	-71	-10	-178	43	-41	26	0	-27	23.26	22.38	23.76		23.19	22.31	23.69	
cis%													2.3				3.4

Table S30 Torsion angles (°) and thermodynamic properties (kcal mol⁻¹) of local minima and transition states of Ac-(2-Mep)-NHMe in water

Conf				Tors	ion angles					DSD-	PBEP86-	D3BJ/cc-p	VTZ	Ν	106-2X/de	ef2-TZVP	
Com.	ω	ϕ	Ψ	ω	χ^0	χ^1	χ^2	χ^3	χ^4	$\Delta E_{\rm e}^{\ d}$	ΔH^e	ΔG^{f}	w^g	$\Delta E_{\rm e}{}^d$	ΔH^e	ΔG^{f}	w^g
cAd- add	7	-87	-6	180	-16	34	-40	30	-8	0.60	0.46	0.50	15.7	0.70	0.57	0.61	15.7
cAu	8	-70	-21	-175	7	-28	39	-35	17	1.53	1.53	2.00	1.3	1.57	1.56	2.03	1.4
cFd	-2	-73	146	174	-17	33	-38	28	-7	1.09	0.98	0.64	12.4	1.16	1.05	0.71	13.2
cFu	-2	-56	158	175	6	-27	39	-35	18	2.89	2.81	3.12	0.2	2.80	2.72	3.03	0.3
tAd	-173	-76	-24	179	-7	28	-38	34	-17	0.32	0.25	0.49	16.0	0.51	0.43	0.68	13.9
tAu	-172	-69	-20	-179	8	-29	39	-35	16	1.32	1.22	1.49	3.0	1.38	1.29	1.56	3.2
tCd	-175	-84	85	-173	-18	35	-39	28	-6	0.39	0.39	0.62	13.0	0.89	0.88	1.11	6.7
tFd	176	-67	143	179	-14	32	-38	29	-9	0.00	0.00	0.00	36.8	0.00	0.00	0.00	43.8
tFu	179	-59	151	180	2	-25	38	-36	21	2.02	2.01	1.84	1.7	2.05	2.05	1.87	1.9
ts1	118	-101	-21	-178	11	16	-36	43	-34	17.85	16.60	17.32		18.59	17.34	18.06	
ts2	119	-94	-14	-174	20	-38	41	-30	6	18.28	17.21	18.69		18.88	17.81	19.29	
ts3	-62	-95	-19	179	12	15	-35	42	-34	18.94	17.75	17.50		19.52	18.33	18.07	
ts4	-63	-85	-9	-178	24	-40	41	-27	2	18.64	17.51	18.76		18.85	17.72	18.97	
cis%													29.6				30.5

Table S31 Torsion angles (°) and thermodynamic properties (kcal mol⁻¹) of local minima and transition states of Ac-(3-mep)-NHMe in chloroform

Conf				Tors	sion angles					DSD-	PBEP86-	D3BJ/cc-p	VTZ	Ν	106-2X/de	ef2-TZVP	
Com.	ω	ϕ	Ψ	ω	χ^0	χ^1	χ^2	χ^3	χ^4	$\Delta E_{ m e}{}^d$	ΔH^e	ΔG^{f}	w ^g	$\Delta E_{\rm e}^{\ d}$	ΔH^e	ΔG^{f}	w^g
cAd	3	-87	-9	180	-19	35	-39	27	-4	2.02	1.95	1.49	3.2	2.05	1.98	1.53	3.2
cAu	0	-65	-25	-176	2	-24	38	-37	22	4.02	4.04	3.65	0.1	3.93	3.95	3.56	0.1
cFd	-3	-69	149	174	-17	33	-38	27	-6	0.72	0.68	0.13	31.4	0.83	0.79	0.24	28.3
cFu	-3	-55	154	176	7	-28	39	-35	18	2.25	2.19	1.84	1.8	2.26	2.20	1.85	1.9
tAd	178	-67	-28	-178	-13	30	-37	29	-10	0.61	0.60	0.74	11.3	0.64	0.63	0.77	11.6
tAu	-174	-66	-19	-178	9	-30	40	-34	16	2.39	2.19	1.93	1.5	2.41	2.21	1.95	1.6
tFd	175	-62	146	175	-14	31	-37	29	-9	0.00	0.00	0.00	39.4	0.00	0.00	0.00	42.6
tFu	-180	-55	150	176	8	-29	40	-35	16	1.01	1.04	0.74	11.3	1.10	1.13	0.82	10.6
ts1	118	-96	-18	178	16	11	-34	44	-38	21.76	20.62	21.76		22.54	21.39	22.54	
ts2	118	-99	-9	-179	16	-36	42	-33	10	22.03	20.64	20.76		22.63	21.24	21.36	
ts3	-60	-94	-15	-180	15	12	-34	44	-37	21.75	20.53	21.16		22.31	21.09	21.72	
ts4	-62	-88	-5	-178	25	-41	41	-27	2	21.30	20.16	20.65		21.47	20.32	20.82	
cis%													36.4				33.5

Table S32 Torsion angles (°) and thermodynamic properties (kcal mol⁻¹) of local minima and transition states of Ac-(3-mep)-NHMe in water

Conf				Tors	sion angles					DSD-	PBEP86-	D3BJ/cc-p	VTZ	Ν	106-2X/de	ef2-TZVP	
Com.	ω	ϕ	Ψ	ω	χ^0	χ^1	χ ²	χ^3	χ^4	$\Delta E_{\rm e}^{\ d}$	ΔH^e	ΔG^{f}	w ^g	$\Delta E_{ m e}{}^d$	ΔH^{e}	ΔG^{f}	w^g
cAd^h	7	-90	-5	-179	-18	34	-39	29	-7	1.11	1.17	1.19	7.8	0.88	0.95	0.97	10.6
cAu^h	5	-68	-26	-177	6	-27	38	-34	18	1.69	1.71	1.62	3.8	1.52	1.54	1.45	4.7
cFd^h	-2	-72	152	176	-17	33	-38	28	-6	2.95	2.95	1.99	2.0	2.66	2.66	1.70	3.1
cFu^h	-3	-55	143	178	7	-28	39	-35	18	2.66	2.72	2.67	0.6	2.44	2.49	2.45	0.9
tAd	-171	-89	-2	178	-17	34	-40	30	-8	1.45	0.94	2.06	1.8	1.39	0.88	2.01	1.8
tAu	-173	-69	-23	179	6	-28	39	-34	18	1.62	1.64	1.50	4.6	1.56	1.58	1.44	4.8
tCd	-173	-85	68	-178	-17	34	-39	29	-8	0.00	0.00	0.00	58.1	0.00	0.00	0.00	54.3
tCu	-172	-82	71	-178	-6	-19	36	-39	28	0.97	1.11	1.37	5.8	1.31	1.45	1.71	3.0
tFd	177	-68	144	180	-15	32	-38	29	-9	1.94	2.15	2.24	1.3	1.66	1.87	1.96	2.0
tFu	179	-56	137	-178	5	-27	38	-35	19	1.37	1.46	0.83	14.2	1.31	1.39	0.77	14.8
ts1	117	-112	-6	-179	0	24	-39	40	-25	18.99	17.43	19.75		19.34	17.78	20.11	
ts2	120	-101	-15	-176	13	-34	41	-34	13	19.22	18.24	19.30		19.68	18.69	19.76	
ts3	-66	-103	-1	178	0	24	-39	39	-25	20.11	18.63	20.82		20.13	18.65	20.84	
ts4	-64	-88	-13	-179	22	-38	40	-27	3	19.87	18.85	19.61		19.89	18.86	19.63	
cis%													14.2				19.3

Table S33 Torsion angles (°) and thermodynamic properties (kcal mol⁻¹) of local minima and transition states of Ac-(3-Mep)-NHMe in chloroform

Conf				Torsic	on angles					DSD-	PBEP86-	D3BJ/cc-p	VTZ	Ν	106-2X/de	ef2-TZVP	
Com.	ø	ϕ	Ψ	ω	χ^0	χ^1	χ ²	χ^3	χ^4	$\Delta E_{\rm e}^{\ d}$	ΔH^e	ΔG^{f}	w ^g	$\Delta E_{ m e}{}^d$	ΔH^e	ΔG^{f}	w ^g
cAd^h	2	-87	-7	-180	-20	35	-38	26	-4	1.93	1.80	1.69	2.5	1.75	1.62	1.51	3.1
cAu^h	-3	-56	-33	178	4	-26	38	-35	19	2.75	2.56	1.88	1.8	2.40	2.21	1.53	3.0
\mathbf{cFd}^h	-6	-67	155	177	-17	33	-37	27	-6	1.53	1.59	0.96	8.7	1.39	1.45	0.82	10.0
cFu^h	-7	-55	149	174	3	-25	38	-35	20	1.11	1.23	1.36	4.4	1.04	1.16	1.28	4.6
tAd^{h}	-179	-75	-14	-179	-13	31	-38	29	-10	1.31	1.27	1.38	4.2	1.24	1.20	1.31	4.3
tAu ^h	-176	-65	-25	-178	3	-25	38	-36	21	1.32	1.00	0.45	20.3	1.31	1.00	0.45	18.7
tCd^{h}	-172	-86	60	179	-16	34	-40	30	-9	2.53	2.47	2.66	0.5	2.53	2.46	2.65	0.5
tCu ^h	-170	-83	54	179	-3	-21	37	-39	26	3.41	3.30	3.27	0.2	3.69	3.58	3.56	0.1
tFd^{h}	177	-62	148	176	-10	29	-37	31	-13	0.85	0.18	0.69	13.6	0.70	0.03	0.54	16.0
tFu ^h	178	-53	143	176	6	-27	39	-35	18	0.00	0.00	0.00	43.7	0.00	0.00	0.00	39.8
ts1	117	-109	-1	178	3	22	-38	40	-27	21.73	20.39	20.05		22.15	20.81	20.47	
ts2	119	-105	-9	-180	11	-32	41	-35	15	21.85	20.39	20.54		22.40	20.93	21.08	
ts3	-60	-97	-4	180	14	12	-33	42	-35	21.60	20.69	21.81		21.72	20.81	21.93	
ts4	-63	-90	-12	-180	23	-39	40	-27	3	21.36	20.12	20.79		21.45	20.22	20.89	
cis%													17.4				20.7

Table S34 Torsion angles (°) and thermodynamic properties (kcal mol⁻¹) of local minima and transition states of Ac-(3-Mep)-NHMe in water

Conf	Torsion angles ^{<i>a</i>}									DSD-	PBEP86-I	D3BJ/cc-p	VTZ^b	Ν	106-2X/de	f2-TZVP ^c	
Colli.	ω	ϕ	Ψ	ω	χ^0	χ^1	χ ²	χ^3	χ^4	$\Delta E_{\rm e}^{\ d}$	ΔH^e	ΔG^{f}	w ^g	$\Delta E_{\rm e}{}^d$	ΔH^e	ΔG^{f}	w^g
cAd	-2	-76	-14	-178	-12	31	-39	32	-13	0.36	0.21	0.04	33.1	0.12	0.00	0.00	34.6
cAu^h	-11	-51	-33	-178	9	-28	38	-32	14	3.54	3.31	2.81	0.3	3.03	2.83	2.39	0.6
cFd	-7	-64	152	176	-14	32	-38	30	-10	1.73	0.89	0.89	7.8	1.53	0.72	0.79	9.1
cFu	-17	-42	143	177	9	-28	38	-32	14	3.82	3.56	2.98	0.2	3.58	3.35	2.83	0.3
tAd	-177	-75	-16	178	-7	28	-39	34	-17	1.23	1.29	1.16	4.9	1.18	1.26	1.20	4.6
tAu	175	-56	-32	179	14	-32	38	-29	9	4.22	4.09	3.82	0.1	3.94	3.84	3.63	0.1
tCd^{h}	-178	-81	70	-177	-13	33	-41	32	-12	0.00	0.00	0.00	35.3	0.00	0.03	0.09	29.7
tFd^{h}	171	-58	143	180	-7	27	-38	33	-16	1.09	0.96	0.39	18.2	0.91	0.81	0.30	20.8
tFu	170	-48	135	-177	12	-30	38	-30	12	3.24	3.21	3.42	0.1	2.96	2.97	3.35	0.1
ts1	107	-93	-20	-177	14	14	-35	43	-35	20.25	19.01	19.54		20.38	19.19	19.88	
ts2	118	-146	16	178	-31	13	9	-29	38	19.23	17.94	18.03		19.40	18.16	18.41	
ts3	-78	-84	-9	178	12	16	-36	42	-34	21.76	20.50	20.81		21.64	20.43	20.90	
cis%													41.4				44.7

Table S35 Torsion angles (°) and thermodynamic properties (kcal mol⁻¹) of local minima and transition states of Ac-(5-mep)-NHMe in chloroform

^{*a*} Torsion angles are defined in Fig. 1. Optimized at the PCM M06-2X/6-31+G(d) level of theory in chloroform. ^{*b*} Single-point energies by the DSD-PBEP86-D3BJ/cc-pVTZ method. ^{*c*} Single-point energies by the M06-2X/def2-TZVP method. ^{*d*} Relative electronic energies. ^{*e*} Relative enthalpies at 25 °C. ^{*f*} Relative Gibbs free energies at 25 °C. ^{*g*} Population (%) of *cis* conformers calculated by ΔG values. ^{*h*} Vibrational frequencies were calculated with the option Int = Ultrafine.

Conf				Tors	sion angles	5				DSD-	PBEP86-	D3BJ/cc-p	VTZ	Ν	106-2X/de	ef2-TZVP	
Com.	ø	ϕ	ψ	ω	χ^0	χ^1	χ ²	χ^3	χ^4	$\Delta E_{\rm e}^{\ d}$	ΔH^e	ΔG^{f}	w ^g	$\Delta E_{\rm e}{}^d$	ΔH^e	ΔG^{f}	w^g
cAd	-7	-75	-14	-178	-15	33	-39	30	-9	1.21	1.19	1.93	2.2	1.07	1.05	1.79	2.8
cAu^h	-15	-49	-35	177	2	-24	37	-35	21	4.55	4.56	4.81	0.0	4.12	4.13	4.38	0.0
cFd	-7	-63	151	176	-13	31	-38	30	-10	0.51	0.40	0.37	29.7	0.56	0.45	0.42	28.1
cFu	-18	-44	149	177	10	-29	38	-32	14	2.50	2.25	2.01	1.9	2.51	2.27	2.02	1.9
tAd	-179	-69	-22	180	-7	27	-38	33	-16	0.85	0.95	1.08	9.0	0.93	1.03	1.16	8.1
tAu	172	-56	-33	-177	5	-26	38	-34	18	3.65	3.73	4.27	0.0	3.46	3.54	4.08	0.1
tCd^{h}	-178	-82	68	-177	-12	32	-41	33	-13	2.52	2.44	3.19	0.3	2.64	2.56	3.32	0.2
tFd^{h}	171	-56	146	174	-6	27	-37	33	-17	0.00	0.00	0.00	55.8	0.00	0.00	0.00	57.4
tFu	171	-47	143	177	13	-31	39	-30	11	1.71	1.76	2.32	1.1	1.61	1.67	2.22	1.4
ts1	107	-92	-21	-178	15	13	-35	43	-37	23.15	21.96	23.22		23.41	22.22	23.48	
ts2	116	-145	10	179	-30	13	9	-28	36	22.04	21.00	22.24		22.30	21.26	22.50	
ts3	-76	-80	-13	179	22	6	-31	43	-41	23.86	22.79	23.81		23.84	22.76	23.78	
cis%													33.8				32.9

Table S36 Torsion angles (°) and thermodynamic properties (kcal mol⁻¹) of local minima and transition states of Ac-(5-mep)-NHMe in water

Conf				Tors	sion angles	5				DSD-	PBEP86-	D3BJ/cc-p	VTZ	Ν	106-2X/de	ef2-TZVP	
Com.	ø	ϕ	Ψ	ω	χ^0	χ^1	χ^2	χ^3	χ^4	$\Delta E_{\rm e}^{\ d}$	ΔH^e	ΔG^{f}	w^g	$\Delta E_{ m e}{}^d$	ΔH^e	ΔG^{f}	w^{g}
cAd	17	-99	0	180	-18	34	-39	28	-6	0.55	0.38	0.40	15.4	0.45	0.37	0.34	15.2
cAu	6	-71	-24	-177	5	-26	38	-34	18	1.27	1.05	0.41	15.0	0.89	0.76	0.07	24.0
cFd	10	-90	148	176	-20	34	-36	24	-2	2.84	2.67	1.88	1.3	2.69	2.60	1.76	1.4
cFu	0	-59	143	177	3	-25	37	-35	20	2.42	1.44	1.98	1.1	2.08	1.18	1.67	1.6
tAd	-168	-95	7	176	-19	35	-39	27	-5	1.67	1.56	1.38	2.9	1.48	1.45	1.23	3.4
tAu	-170	-73	-19	180	3	-25	38	-35	20	1.28	1.13	1.01	5.5	1.01	0.94	0.77	7.4
tCd	-170	-89	65	-179	-22	35	-37	23	0	0.09	0.00	0.05	27.8	0.00	0.00	0.00	27.1
tCu	-173	-83	71	-177	-11	-13	32	-37	31	0.00	0.02	0.00	30.2	0.18	0.29	0.22	18.7
tFd	-173	-82	138	-180	-20	33	-35	22	-1	2.75	2.70	2.17	0.8	2.42	2.45	1.87	1.2
ts1	119	-107	-9	-179	7	20	-38	42	-31	17.28	15.85	16.04		17.64	16.30	16.43	
ts2	118	-100	-14	-176	14	-34	40	-32	11	18.67	17.31	17.75		19.00	17.72	18.11	
ts3	-63	-107	0	178	2	23	-39	40	-27	18.05	16.59	16.82		18.23	16.86	17.04	
ts4	-67	-86	-9	-179	23	-38	39	-26	2	19.10	17.75	18.03		19.15	17.89	18.13	
cis%													32.7				42.2

Table S37 Torsion angles (°) and thermodynamic properties (kcal mol⁻¹) of local minima and transition states of Ac-(5-Mep)-NHMe in chloroform

Conf				Tors	sion angles					DSD-	PBEP86-	D3BJ/cc-p	VTZ	Ν	106-2X/de	ef2-TZVP	
Com.	ø	ϕ	Ψ	ω	χ^0	χ^1	χ^2	χ^{3}	χ^4	$\Delta E_{\rm e}^{\ d}$	ΔH^e	ΔG^{f}	w^g	$\Delta E_{ m e}{}^d$	ΔH^e	ΔG^{f}	w^g
cAd	11	-96	-1	180	-19	35	-38	26	-4	0.66	0.76	1.33	4.8	0.87	0.97	1.54	3.5
cAu	1	-66	-26	-179	2	-24	37	-35	21	1.34	1.17	1.20	6.0	1.18	1.01	1.04	8.2
cFd	11	-89	154	175	-19	33	-36	25	-3	1.01	1.06	1.07	7.5	1.24	1.30	1.30	5.3
cFu	-4	-59	153	176	0	-23	37	-36	23	0.12	0.16	0.36	24.7	0.18	0.22	0.41	23.7
tAd	-169	-85	-4	179	-17	34	-38	28	-6	0.86	1.01	1.82	2.1	0.94	1.09	1.91	1.9
tAu	-173	-69	-21	-177	0	-23	37	-36	22	0.00	0.00	0.00	45.1	0.00	0.00	0.00	47.6
tCd	-171	-89	58	-179	-25	37	-36	21	3	1.77	1.63	2.03	1.5	1.97	1.83	2.22	1.1
tCu	-174	-82	65	-179	-12	-13	32	-38	31	2.22	2.16	1.75	2.3	2.66	2.60	2.20	1.2
tFd	-173	-74	148	176	-16	31	-36	26	-6	1.25	1.32	1.20	6.0	1.15	1.21	1.09	7.5
ts1	117	-98	-14	180	17	10	-33	43	-38	19.38	18.16	19.46		20.05	18.83	20.13	
ts2	119	-111	-6	-177	4	-26	38	-36	20	20.80	19.55	20.57		21.44	20.19	21.22	
ts3	-60	-100	-5	178	11	16	-36	42	-34	19.25	17.97	18.33		19.81	18.53	18.89	
ts4	-66	-88	-8	-178	25	-40	40	-25	0	20.19	19.18	20.39		20.57	19.56	20.78	
cis%													43.0				40.7

Table S38 Torsion angles (°) and thermodynamic properties (kcal mol⁻¹) of local minima and transition states of Ac-(5-Mep)-NHMe in water

Conf				Tors	sion angles	5				DSD-	PBEP86-l	D3BJ/cc-p	VTZ	Ν	106-2X/de	ef2-TZVP	
Colli.	ω	ϕ	ψ	ω	χ^0	χ^1	χ ²	χ^3	χ^4	$\Delta E_{\rm e}^{\ d}$	ΔH^e	ΔG^{f}	w ^g	$\Delta E_{ m e}{}^d$	ΔH^e	ΔG^{f}	w^g
cAd	-19	-50	-34	179	-5	23	-33	29	-15	1.58	1.40	1.68	3.4	1.41	1.10	1.36	5.3
cAu	-24	-38	-40	178	14	-32	39	-30	9	8.01	7.68	7.24	0.0	8.07	7.60	7.15	0.0
cFd	-20	-48	148	177	-4	23	-33	30	-16	0.11	0.00	0.00	58.5	0.26	0.02	0.00	52.3
cFu	-30	-23	145	175	29	-35	29	-11	-12	4.61	4.19	3.09	0.3	5.11	4.55	3.44	0.2
tAd	167	-52	-37	-178	6	15	-30	32	-24	1.11	1.02	1.26	7.0	1.24	1.02	1.24	6.5
tAu	160	-34	-50	176	35	-36	25	-4	-20	5.38	5.36	5.20	0.0	5.78	5.63	5.46	0.0
tFd	167	-51	145	176	3	17	-30	32	-22	0.00	0.14	0.38	30.8	0.00	0.00	0.23	35.8
ts1	106	-136	13	178	-32	40	-33	14	11	25.57	23.92	23.59		26.43	24.65	24.30	
ts2	112	-148	10	-179	-34	16	9	-30	40	21.60	20.13	20.43		22.10	20.49	20.78	
cis%													62.2				57.8

Table S39 Torsion angles (°) and thermodynamic properties (kcal mol⁻¹) of local minima and transition states of Ac-(5-tbp)-NHMe in water

Conf				Tors	sion angles					DSD-	PBEP86-	D3BJ/cc-p	VTZ	Ν	106-2X/de	ef2-TZVP	
Com.	ø	ϕ	Ψ	ω	χ^0	χ^1	χ^2	χ^3	χ^4	$\Delta E_{\rm e}^{\ d}$	ΔH^e	ΔG^{f}	w ^g	$\Delta E_{\rm e}{}^d$	ΔH^e	ΔG^{f}	w^g
cDd^{h}	25	-122	48	-173	-31	40	-36	17	8	2.13	2.04	2.67	0.7	2.15	2.05	2.68	0.7
cAu	12	-83	-9	-177	2	-22	34	-32	18	0.51	0.38	0.67	19.0	0.55	0.42	0.72	18.2
cFd^h	33	-110	146	174	-16	32	-36	26	-6	4.21	4.15	3.74	0.1	4.55	4.50	4.08	0.1
cFu^h	13	-75	160	176	3	-23	34	-32	18	0.00	0.00	0.00	59.0	0.00	0.00	0.00	60.8
tAu	-160	-82	-4	-179	-1	-20	33	-33	21	0.89	0.92	0.77	16.0	0.97	1.00	0.85	14.4
tCd	-156	-98	63	-174	-29	35	-30	13	10	2.14	1.91	2.32	1.2	1.95	1.72	2.13	1.7
tCu	-161	-87	43	178	-11	-10	26	-32	27	1.29	1.24	1.57	4.2	1.29	1.24	1.57	4.3
ts1	134	-112	4	180	-4	28	-42	39	-21	18.63	17.25	17.75		19.01	17.63	18.13	
ts2	120	-97	-13	-177	18	-33	37	-26	5	18.29	16.96	17.83		18.56	17.24	18.10	
ts3	-49	-111	3	178	-3	26	-39	37	-21	17.47	16.21	16.97		17.84	16.58	17.34	
ts4	-60	-89	-12	-178	23	-37	37	-23	0	16.98	15.37	15.38		17.13	15.52	15.53	
cis%													78.7				79.7

Table S40 Torsion angles (°) and thermodynamic properties (kcal mol⁻¹) of local minima and transition states of Ac-(5-Tbp)-NHMe in water

Conf					Torsion	angles					DSD-I	PBEP86-	D3BJ/cc-	pVTZ	Μ	06-2X/d	ef2-TZVF	2
Com.	ď	ϕ	ψ	ω	χ^0	χ^1	χ^2	χ^3	χ^4	$\chi^{ m OH}$	$\Delta E_{\rm e}{}^d$	ΔH^{e}	ΔG^{f}	w^g	$\Delta E_{\rm e}^{\ d}$	ΔH^{e}	ΔG^{f}	w ^g
cAd-gm ^h	1	-85	-8	-178	-19	34	-38	26	-4	-75	3.01	2.93	2.96	0.3	2.89	2.81	2.84	0.3
cAd-g	2	-86	-7	-179	-20	34	-36	24	-3	57	2.51	2.69	3.29	0.1	2.60	2.77	3.38	0.1
cAd-t	1	-85	-7	-178	-19	34	-37	25	-4	-169	3.04	3.04	3.38	0.1	2.98	2.98	3.32	0.1
cAu-gm	-1	-74	-21	-176	-3	-20	35	-36	25	-61	2.62	2.42	2.63	0.5	2.39	2.19	2.40	0.6
cAu-g	3	-80	-17	-178	-7	-18	35	-39	29	62	3.55	3.38	3.77	0.1	3.39	3.21	3.61	0.1
cAu-t	-2	-70	-23	-177	-3	-20	34	-36	24	176	2.62	2.55	2.71	0.4	2.41	2.34	2.50	0.5
cFd-gm	-5	-66	152	177	-16	32	-37	27	-7	-74	2.41	2.48	3.11	0.2	2.54	2.61	3.24	0.2
cFd-g	-5	-66	151	177	-16	32	-37	27	-7	58	1.95	2.14	2.87	0.3	2.15	2.34	3.07	0.2
cFd-t	-5	-66	151	177	-16	32	-37	27	-7	-169	2.48	2.59	3.25	0.2	2.55	2.67	3.33	0.1
cFu-gm ^{h,i}	-6	-56	148	176	4	-26	38	-35	20	-64	1.19	1.01	0.66	12.7	1.01	0.83	0.48	16.2
cFu-g	-7	-57	148	177	1	-24	37	-35	22	58	2.32	2.30	2.89	0.3	2.19	2.16	2.76	0.3
cFu-t ^h	-6	-56	148	177	3	-25	37	-35	20	175	1.26	1.19	1.45	3.3	1.06	0.99	1.25	4.4
tAd-gm	-178	-73	-15	-179	-12	31	-38	30	-11	-71	2.45	2.48	2.70	0.4	2.46	2.49	2.71	0.4
tAd-g	-179	-72	-17	-178	-11	30	-38	30	-12	56	1.90	2.06	2.33	0.7	2.05	2.22	2.49	0.5
tAd-t	-178	-72	-16	-179	-11	30	-38	31	-12	-171	2.25	2.27	2.22	0.9	2.33	2.35	2.30	0.7
tAu-gm	-176	-68	-23	-177	0	-23	37	-36	23	-62	1.34	1.34	1.84	1.7	1.40	1.39	1.90	1.5
tAu-g	-176	-69	-22	-177	-1	-22	37	-37	24	56	2.35	2.35	3.00	0.2	2.37	2.36	3.02	0.2
tAu-t	-176	-69	-23	-177	0	-23	37	-36	23	177	1.18	1.14	1.72	2.1	1.30	1.26	1.84	1.6
tCd-gm	-172	-86	63	-179	-15	34	-41	31	-10	-74	3.08	3.33	3.96	0.0	3.38	3.62	4.26	0.0
tCd-g	-173	-86	63	-179	-15	34	-40	31	-10	56	2.47	2.84	3.70	0.1	2.96	3.32	4.19	0.0
tCu-gm	-169	-86	64	-180	-5	-20	37	-39	28	-62	3.02	2.87	3.30	0.1	3.16	3.01	3.45	0.1
tCu-g	-170	-88	75	-177	-8	-18	36	-39	30	57	3.72	3.12	4.83	0.0	3.40	2.80	4.51	0.0
tCu-t	-169	-87	76	-177	-6	-19	36	-39	29	177	2.72	2.13	3.93	0.1	2.56	1.96	3.76	0.1
tFd-gm	175	-61	148	175	-11	30	-37	30	-12	-75	1.78	1.72	2.05	1.2	1.60	1.54	1.87	1.5
tFd-g	175	-60	148	175	-11	29	-37	30	-12	56	1.23	1.37	1.97	1.4	1.27	1.42	2.02	1.2
tFu-gm	177	-53	144	177	5	-26	38	-34	19	-63	0.04	0.04	0.15	29.9	0.05	0.04	0.15	28.0
tFu-g	176	-54	144	177	4	-26	38	-34	19	55	1.16	1.20	1.28	4.4	1.11	1.14	1.22	4.6
tFu-t	177	-54	144	177	5	-27	38	-35	19	176	0.00	0.00	0.00	38.3	0.00	0.00	0.00	36.2
ts1	120	-108	-1	180	8	-31	41	-37	18	75	20.02	18.68	19.60		19.26	17.92	18.84	

Table S41 Torsion angles (°) and thermodynamic properties (kcal mol⁻¹) of local minima and transition states of Ac-Hyp-NHMe in water

ts2	116	-108	1	176	6	20	-39	43	-30	-72	22.58	21.84	23.81		22.39	21.65	23.62	
ts3	-64	-89	-6	-178	24	-39	39	-25	0	-64	21.12	19.99	21.05		20.06	18.93	19.99	
ts4	-60	-107	6	179	5	21	-38	41	-29	-74	22.58	21.82	23.09		21.97	21.20	22.47	
cis%														18.4				23.2

^{*a*} Torsion angles are defined in Fig. 1. Optimized at the SMD M06-2X/6-31+G(d) level of theory in water. ^{*b*} Single-point energies by the DSD-PBEP86-D3BJ/cc-pVTZ method. ^{*c*} Single-point energies by the M06-2X/def2-TZVP method. ^{*d*} Relative electronic energies. ^{*e*} Relative enthalpies at 25 °C. ^{*f*} Relative Gibbs free energies at 25 °C and 1 atm. ^{*g*} Population (%) of *cis* conformers calculated using ΔG values. ^{*h*} "gm" stands for the gauche- for χ^{OH} . ^{*i*} Vibrational frequencies were calculated with the option Int = Ultrafine.

Conf				7	Forsion	angles					DSD-I	PBEP86-	D3BJ/cc-	pVTZ	Μ	06-2X/d	ef2-TZVI	Р
Com.	ω	ϕ	ψ	ω	χ^0	χ^1	χ^2	χ^3	χ^4	$\chi^{ m OH}$	$\Delta E_{\rm e}{}^d$	ΔH^e	ΔG^{f}	w^g	$\Delta E_{\rm e}^{\ d}$	ΔH^e	ΔG^{f}	w^g
cAd-gm ^h	2	-84	-8	-177	-19	33	-35	24	-3	-62	4.41	4.41	4.26	0.0	4.16	4.15	4.01	0.0
cAd-g	2	-90	5	-178	-22	35	-36	23	0	63	3.01	2.80	1.87	1.2	2.71	2.51	1.58	1.7
cAd-t	4	-88	3	-178	-20	35	-37	24	-2	-174	3.05	2.75	1.91	1.1	2.79	2.49	1.65	1.5
cAu-gm	-4	-72	-20	-176	-7	-17	33	-37	28	-58	5.06	5.19	4.52	0.0	4.71	4.83	4.17	0.0
cAu-g	-4	-71	-20	-176	-7	-17	34	-37	28	72	5.50	5.46	4.57	0.0	5.22	5.17	4.28	0.0
cAu-t	-4	-72	-20	-176	-8	-16	33	-37	28	171	5.38	5.36	4.59	0.0	5.08	5.06	4.29	0.0
cFd-gm ^{h,i}	1	-68	144	176	-9	28	-36	30	-13	-54	1.13	1.07	0.68	8.8	1.15	1.09	0.70	7.6
cFd-g	-2	-75	174	177	-17	34	-38	27	-6	62	2.63	2.35	0.95	5.6	2.60	2.32	0.92	5.2
cFd-t	-8	-74	-177	180	-23	37	-38	24	-1	-173	2.94	2.73	1.84	1.2	2.58	2.37	1.48	2.0
cFu-gm	-6	-56	149	176	3	-26	38	-35	20	-57	3.57	3.89	3.05	0.2	3.32	3.64	2.80	0.2
cFu-g	-5	-56	149	176	4	-26	39	-36	20	73	3.93	4.09	3.17	0.1	3.84	4.00	3.08	0.1
cFu-t	-6	-56	149	176	2	-25	38	-37	22	173	3.96	4.11	3.01	0.2	3.79	3.94	2.84	0.2
tAd-gm	-176	-78	-8	-179	-12	30	-36	28	-10	-57	3.88	3.65	2.32	0.5	3.70	3.47	2.14	0.7
tAd-g	-175	-82	3	180	-13	32	-39	30	-10	61	2.40	2.23	1.44	2.4	2.15	1.97	1.18	3.3
tAd-t	-175	-81	3	180	-13	32	-39	30	-11	-176	2.34	2.23	1.86	1.2	2.20	2.10	1.72	1.4
tAu-gm	-176	-67	-22	-178	0	-23	37	-36	23	-56	3.64	3.94	3.26	0.1	3.39	3.69	3.01	0.2
tAu-g	-176	-67	-22	-178	1	-24	38	-37	23	74	4.16	4.21	3.18	0.1	3.94	4.00	2.97	0.2
tAu-t	-176	-67	-22	-178	-1	-23	37	-37	23	172	3.92	3.97	2.88	0.2	3.80	3.85	2.76	0.2
tCd-gm	-173	-84	86	-175	-10	28	-36	29	-12	-29	1.93	1.95	2.03	0.9	2.03	2.05	2.13	0.7
tCu-gm	-172	-83	79	-176	-6	-19	35	-38	27	-55	5.43	5.69	4.82	0.0	5.51	5.77	4.90	0.0
tCu-g	-172	-82	78	-176	-5	-20	36	-38	27	72	6.00	6.17	5.20	0.0	6.14	6.31	5.34	0.0
tCu-t	-172	-83	78	-176	-5	-20	36	-39	28	172	5.60	5.85	5.15	0.0	5.85	6.10	5.40	0.0
tFd-gm	175	-58	143	177	-6	27	-37	32	-17	-52	0.00	0.00	0.00	27.6	0.00	0.00	0.00	24.6
tFd-g	180	-63	158	177	-6	26	-35	31	-16	60	2.15	1.97	0.67	8.9	2.15	1.98	0.67	7.9
tFd-t	180	-63	158	177	-7	26	-35	31	-15	-178	2.18	1.98	0.62	9.7	2.19	2.00	0.63	8.4
tFu-gm	179	-54	145	175	6	-28	39	-34	18	-57	2.40	2.47	0.81	7.0	2.17	2.24	0.58	9.2
tFu-g	180	-55	146	175	7	-28	40	-35	18	73	2.84	2.81	1.16	3.9	2.71	2.68	1.03	4.3
tFu-t	178	-54	145	175	4	-27	39	-36	20	172	2.78	2.63	0.22	19.0	2.68	2.52	0.11	20.3
ts1	117	-116	12	176	-3	27	-40	39	-23	-173	22.25	20.98	21.31		22.55	21.28	21.62	

Table S42 Torsion angles (°) and thermodynamic properties (kcal mol⁻¹) of local minima and transition states of Ac-hyp-NHMe in water

ts2	121	-109	-1	-180	6	-29	40	-37	19	173	23.75	22.72	23.27		24.12	23.10	23.65	
ts3	-62	-112	16	178	-1	25	-39	39	-23	-175	22.11	20.86	20.89		22.05	20.81	20.84	
ts4	-60	-92	-2	180	21	-38	40	-28	4	173	23.61	22.52	22.00		23.60	22.50	21.98	
cis%														18.4				18.7

^{*a*} Torsion angles are defined in Fig. 1. Optimized at the SMD M06-2X/6-31+G(d) level of theory in water. ^{*b*} Single-point energies by the DSD-PBEP86-D3BJ/cc-pVTZ method. ^{*c*} Single-point energies by the M06-2X/def2-TZVP method. ^{*d*} Relative electronic energies. ^{*e*} Relative enthalpies at 25 °C. ^{*f*} Relative Gibbs free energies at 25 °C and 1 atm. ^{*g*} Population (%) of *cis* conformers calculated using ΔG values. ^{*h*} "gm" stands for the gauche- for χ^{OH} . ^{*i*} Vibrational frequencies were calculated with the option Int = Ultrafine.