Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

## **Electronic Supplementary Information**

Environmentally benign pH-responsive cytidine-5'-monophosphate molecule-mediated akaganeite (5'-

CMP-β-FeOOH) soft supramolecular hydrogels induced by the puckering of ribose sugar with efficient

loading/release capabilities

Anil Kumar\* and Priyanka

Department of Chemistry,

Indian Institute of Technology Roorkee,

Roorkee- 247667, Uttarakhand, INDIA.

E-mail: anilkfcy@iitr.ac.in; akmshfcy@gmail.com; Tel.. +91-1332-285799; Fax. +91-1332-273560



Scheme 1. Presenting the formation of hydrogel (SPC3H) from the dialyzed colloidal solution of 5'-CMPmediated  $\beta$ -FeOOH (SPC3) in **non-energy intensive process**.

#### Thermogravimetric analysis (TGA)

The thermal stability of as synthesized solid sample(s) (SPC3, SPC3H and SPB) and 5'-CMP has been examined by performing TGA experiments in the temperature range of 0 to 800 °C (Fig. S1A and S1B).



Fig. S1. Thermogravimetric analysis curves (A): - SPC3 (a), SPC3H (b), SPB (c); (B). 5'-CMP.

A comparison of the TGA curves of these samples clearly shows that the thermal stability arises in the order (% loss in weight, temperature): SPB (18, beyond 510 °C) > SPC3H (25, beyond 337 °C) > SPC3 (32, beyond 337 °C), depicting the bare  $\beta$ -FeOOH to be though the most stable. However, between SPC3 and SPC3H, the latter is found to be more stable. In a control experiment 5'-CMP molecules exhibited >40 % loss in weight upto 300 °C (Fig. S1B) and decomposes regularly thereafter unlike to that of SPC3H.



**Fig. S2** UV-Vis spectra of SPC (SPC1-SPC5) containing varied [5'-CMP]; absorption spectra of 5'-CMP; ( ) and SPB (-----).



**Fig. S3.** XRD patterns of colloidal samples at different [5'- CMP] at pH 4.3 along with SPB (β-FeOOH).

## Zeta potential



Fig. S4 Zeta potential of SPC3 as a function of pH.

AFM

# Pore depth profile for SPC3H



Fig. S5 Pore depth profile of SPC3H.

### TEM



Fig. S6 TEM of SPC3H freeze dried hydrogels.

## FESEM



Fig. S7 FESEM images for SPC3H.



**Fig. S8** M-H and FC-ZFC curves of SPC3H: M-H curves at different temperatures (A) and enlarge image of A (B); FC-ZFC curve (C), 100 Oe (curve a), 500 Oe (curve b); M vs H/T curves (D); M-H curves at different temperatures (K): (a) 60; (b) 10, 20 and 30.

**Table S1** Magnetization value of SPC3H at different temperatures.

| Sample | Magnetization | Magnetization | Magnetization | Coercivity            |
|--------|---------------|---------------|---------------|-----------------------|
|        | (emu/ g) 5 K  | (emu/ g)      | (emu/ g)      | (H <sub>c</sub> ) (T) |
|        |               | 100 K         | 300 К         | 5К                    |
| SPC3H  | 7.17          | 5.03          | 2.4           | 0.3                   |

Raman spectra



Fig. S9 Raman spectra for (a) Bare  $\beta$ -FeOOH (SPB); (b) bare 5'-CMP at pH 7.

 Table S2
 Raman spectroscopic data.

| Assignment of peaks                | Raman peaks for different sample(s) (cm <sup>-1</sup> ) |                       |                              |          |  |
|------------------------------------|---------------------------------------------------------|-----------------------|------------------------------|----------|--|
|                                    | Cytidine<br>literature peaks                            | CMP observed<br>peaks | β-FeOOH<br>observed<br>peaks | SPC3H    |  |
| Fe-O vib. of octahedral<br>Fe site | -                                                       | _                     | 320                          | 322      |  |
| Fe-O vib. of octahedral<br>Fe site | -                                                       | -                     | 388                          | 398      |  |
|                                    |                                                         |                       | 539, 720                     | 535, 731 |  |
| RS                                 | 408                                                     | 402                   | -                            | -        |  |
| C+RS                               | 456                                                     | 464                   | -                            | -        |  |

| δ(C2-N3=C4)                                    | 560  | 554  | - | -        |
|------------------------------------------------|------|------|---|----------|
| and δ(N1-C2-N3)                                |      |      |   |          |
| C2=O2 bending                                  | 600  | 586  | - | -        |
| δ(N1-C1'-O)                                    | 626  | 629  | - | -        |
| Ring breathing                                 | 792  | 788  | - | 792      |
| P-O str.                                       | 818  | 808  | - | -        |
| δ(C2'-C1'-O).                                  | 844  | 842  | - | 839      |
| RS                                             | 870  | 872  | - | -        |
| δ(Ο3'-C3'Η)                                    | 944  | 941  | - | 948      |
| Out of phase                                   | 986  | 986  | - | 978, 994 |
| δ(C4-N4H) / PO <sub>3</sub> <sup>2-</sup> str. |      |      |   |          |
| RS                                             | 1074 | 1071 | - | 1071     |
| RS                                             | 1096 | 1096 |   | 1098     |
| νC4'O-νC4'C3'-δC3'O3'                          | 1117 | -    | - | 1113     |
| δ(C2'C1'H),                                    | 1138 | 1138 | - | 1149     |
| rNH <sub>2,</sub>                              |      |      |   |          |
| δ(01'C1'H)                                     |      |      |   |          |
| v(C1'-N1)                                      | 1194 | 1184 | - | 1182     |
| C+RS                                           | 1252 | 1265 | - | 1262     |
| δ (C2'-C1')                                    | 1291 | -    | - | 1291     |

\**C* and *RS* denote cytosine and ribose sugar, respectively.  $\delta$  = bending mode, v = stretching mode,

r = rocking mode, br = board.

# IR spectroscopy



Fig. S10 FTIR of SPC3 at pH 4.3.

 Table S3 FTIR spectroscopic data for different samples.

| Functional<br>Group/<br>assignments of<br>peaks | IR peaks for different sample(s) (cm <sup>-1</sup> ) |                                 |                          |                              |                |                 |
|-------------------------------------------------|------------------------------------------------------|---------------------------------|--------------------------|------------------------------|----------------|-----------------|
|                                                 | β-FeOOH<br>literature<br>peaks                       | Cytidine<br>literature<br>peaks | CMP<br>Observed<br>peaks | β-FeOOH<br>Observed<br>peaks | SPC3<br>pH 4.8 | SPC3H<br>pH 7   |
| Fe-O-Fe str.                                    | 420, 471,<br>644, 696                                | -                               | -                        | 427,480,641,<br>696          |                | 473, 707 (br)   |
| Fe-OHCl<br>deformation                          | 815, 833                                             | -                               | -                        | 837(s)                       |                | diminish        |
| Bending vib. of $H_2O$                          | 1632                                                 | -                               | -                        | 1632(s)                      |                | 1632(red. Int.) |
| Base bending mode                               |                                                      | 555                             | 546                      | -                            | diminish       | diminish        |
| δ(N1-C1'-O4')                                   |                                                      | 621                             | 600                      |                              | 600(less int.) | diminish        |

| δ(C2'-Cl'-N1),<br>δ(NI-Cl'-O4')           | 630  | 629       | 651 (br)           | 651(br.)                |
|-------------------------------------------|------|-----------|--------------------|-------------------------|
| δ (C5-C4-N4)                              | 715  | 710       | 707(br)            | 707 (br) (684-<br>741)  |
| (br)Ring<br>breathing                     | 790  | 786       | 790 (br)           | 790(br, less Int.)      |
| P-O str.                                  | 817  | 817       | diminish           | diminish                |
| δ(C2'-Cl'-O4')                            | 845  | -         |                    | 852                     |
| RS                                        | 872  | 873       | 872( s)            | diminish                |
| In phase δ<br>(C4'C5'H)                   |      |           |                    |                         |
| RS                                        | 943  | 945       | diminish           | diminish                |
| δ (O3'C3'H)                               |      |           |                    |                         |
| -PO <sub>3</sub> <sup>2-</sup> sym. Str., | 985  | 980       | 984 (br)           | 984(br, less Int.)      |
| -NH <sub>2</sub> bending                  |      |           |                    |                         |
| δ(N1-C1'H)                                | 1054 | 1051      | 1057(br)           | 1066 (br)               |
| -PO <sub>3</sub> <sup>2-</sup> deg.       | 1080 | 1077      | diminish           | diminish                |
| (νC4'O-νC4'C3'-<br>δ C3'O3')              | 1117 | 1117 (br) | 1113(br)           | 1113(s)(br) new<br>band |
| δ(C2'C1'H),<br>r(NH2),                    | 1154 | 1147      | diminish           | diminish                |
| δ(Ο1'C1'Η)                                |      |           |                    |                         |
| RS                                        | 1213 | 1222      | 1216(less          | 1216(less Int.)         |
| δ(C2'O2'H)                                |      |           |                    |                         |
| C+RS                                      | 1248 | 1255      | diminish           | diminish                |
| C+RS                                      | 1294 | 1295      | 1286               | 1286 (less Int.)        |
| RS                                        | 1340 | 1345      | 1345               | 1345(br, less           |
| δ(HC4'O1')                                |      |           |                    |                         |
| δ(C4=N3) and<br>(C4-N4)                   | 1505 | 1496      | 1491(less<br>int.) | 1491(less Int.)         |

| δ(N-H)in plane | 1540 | 1535 | 1526      | diminish          |       |
|----------------|------|------|-----------|-------------------|-------|
| C2=O2 str.     | 1662 | 1653 | 1653 (br) | 1653(br)<br>int.) | (less |

\**C* and *RS* denote cytosine and ribose sugar, respectively.  $\delta$  = bending mode, v = stretching mode, r = rocking mode, deg. = degeneracy, br = broad, s = sharp, red = reduce.

In control experiments, the spectrum due to 5'-CMP shows various peaks (cm<sup>-1</sup>) matching to functional groups: 600 ( $\delta$ (N1-C1'-O)), 629 ( $\delta$ (C2'-Cl'-N1))/ ( $\delta$ (NI-Cl'-O4')), 710 ( $\delta$ (C5-C4-N4)), 786 (ring breathing), 817 (P-O str.), 872 ( $\delta$ (C4'-C5'H)), 945 ( $\delta$ (O3'-C3'H)), 980 (PO<sub>3</sub><sup>2-</sup> sym. Str. / -NH<sub>2</sub> bending), 1051 (sh, -CH def. with contribution from  $\delta$ (N1-C1'H)), 1077 (PO<sub>3</sub><sup>2-</sup> deg.), 1117 (vC4'O-vC4'C3'- $\delta$ C3'O3'), 1147 ( $\delta$ (C2'C1'H)/ r(NH2)/  $\delta$ (O1'C1'H), 1222 ( $\delta$ (C2'O2'H)), 1255 (C+RS), 1295 (C+RS), 1345( $\delta$  (HC4'O1'), 1496 ( $\delta$ (C4=N3) and (C4-N4)), 1535( $\delta$ (N-H) in plane) and 1657 (C2=O2 str.) matching largely with the literature data (Table S3).

X-ray photoelectron spectroscopy



Fig. S11 XPS Spectra of SPC3H and SPC3 for P (e, e') and Cl (f, f') respectively.

| Table S4 XPS d | ata for | SPC3 | and | SPC3H. |
|----------------|---------|------|-----|--------|
|----------------|---------|------|-----|--------|

| Elements | Binding energy (eV) of elements in | Binding energy (eV) of elements in SPC3 |
|----------|------------------------------------|-----------------------------------------|
|          | SPC3H and (intensity/ area)        | and (intensity/ area)                   |
| Fe       | 710.09 ((2267.4/885.3)             | 709.93 (4024.5/1512.0)                  |
|          | 712.0 (11140.8/2111.9)             | 711.93 (6435.9/1514.6)                  |
|          | 718.01 (16914.9/1441.7)            | 717.8 (1330.1/1468.4)                   |
|          | 723.54 (900.6/356.6)               | 723.51 (1440.0/492.5)                   |
|          | 725.92 (12011.3, 1752.5)           | 726.15 (15485.5/2036.2)                 |

| 0  | 529.26 (5137/2802.5)  | 528.66 (971.7/832.3)   |
|----|-----------------------|------------------------|
|    | 530.5 (2498.8/1853.1) | 530.06 (2820.9/1954.1) |
|    | 531.5 (5462.2/2138.4) | 531.7 (8291.3/5032.6)  |
| N  | 398.28 (260.4/201.3)  | 398.07 (201.3/121.3)   |
|    | 399.72 (1388.6/585.2) | 399.73 (710.4/206.1)   |
|    | 400.54 (90.7/81.6)    | 399.95 (383.9/30.4)    |
| С  | 284.1 (867.8/565.2)   | 283.4 (3917.5/2673.9)  |
|    | 285.6 (669.5/450.6)   | 285.2 (2312.4/1198.4)  |
|    | 286.8 (1619.4/461.2)  | 287.3 (767.3/425.9)    |
| Р  | 133.0 (199.3/423)     | 133.0 (386/766)        |
| Cl | 197.5                 | 197.3 (283.3/232.6)    |
|    | 198.4                 | 198.7 (433.6/193.3)    |

**Table S5** Rheological data of SPC(s) having different [5'-CMP] at pH 7.

| Samples<br>at pH<br>7.0 | Viscosity<br>(cP) | Storage<br>modulus<br>(Pa) | Loss<br>modulus<br>(Pa) | Yield<br>strain<br>(%) | Shear<br>stress<br>(Pa) | LVR<br>(%) |
|-------------------------|-------------------|----------------------------|-------------------------|------------------------|-------------------------|------------|
| SPC2H                   | 381               | 38997                      | 1642                    | 5.6                    | 1530                    | 2.5        |
| SPC3H                   | 5557              | 40169                      | 2307                    | 8.1                    | 1640                    | 4.0        |
| SPC4H                   | 456               | 38141                      | 2183                    | 2.0                    | 674                     | 1.5        |

Surface area measurement

The surface area of SPC3H was determined by performing BET measurements by degassing it for 5h at 105 °C. Its adsorption isotherm curve depicted Type IV behavior (Fig. S16a). Interestingly, DFT analysis of pore size distribution exhibited SPC3H surface to contain both micro- (1.2 nm) as well as mesoporous (4.7 nm) pores (Fig. S16b). The surface area, pore volume and pore width data obtained from these measurements are compiled in Table S7.



Fig. S12 (a) Adsorption isotherm of SPC3H; (b) pore size distribution by using DFT calculation.

 Table S6 BET data of SPC3H at pH 7.0.

| Sample | Surface | Pore           | Total pore |
|--------|---------|----------------|------------|
|        | area    | width          | volume     |
|        | (m²/g)  | (nm)           | (cc/g)     |
| SPC3H  | 269     | 1.2 and<br>4.7 | 0.31       |

#### Release of MB at pH 5.5



Fig. S13 Release of MB at pH 5.5.

#### Sensing of alcohol



Fig. S14 (A) SPC3H gel and NB before addition of alcohol; (B) SPC3H gel and NB after addition of alcohol.



Adsorption and release of MB on FD gel at pH 7.

**Fig. S15** (A) Adsorption isotherm of MB on FD gel; (B) Release profile of MB for: 5.5  $\mu$ M (curve a); 8  $\mu$ M (curve b) adsorbed on FD gel at pH 7.

In case of FD hydrogels, the adsorbed amount of MB as a function of its initial concentration is presented in Fig. S15A. The adsorption isotherm for MB exhibits it to be of Type IV. At its lower concentrations (60  $\mu$ M) it matched to Type I isotherm, whereas at its higher concentrations, *i.e.* beyond >60  $\mu$ M, it either might be showing a secondary adsorption on the surface of hydrogels or starts entering into the available pores. The amount of adsorbed MB corresponding to the first and second plateau comes out to be 5.5  $\mu$ M (0.9 mg/g) and 8.0  $\mu$ M (1.3 mg/g) (Fig. S15A) and its release profile for the different amount of adsorbed MB are shown in Fig. S15B. From these curves it is apparent that the release for higher [MB] was almost linear up to 35%, thereafter it slows down and attained the plateau value after about 12 h. Whereas, the release becomes relatively much slower for the lower amount of the adsorbed dye taking about 33 h for 91% release similar to that observed for the soft hydrogel.

# Cell viability



Fig. S16 Cell viability bar diagram of different [SPC3H] on 293T human embryonic kidney cell.

Rheology measurements at pH 5.8



**Fig. S17** Viscosity of various hydrogels samples at fixed shear rate 100 s<sup>-1</sup> (a); viscosity profile for the shear sweep of hydrogels samples (b); viscoelastic behavior of gel: (B) amplitude sweep oh hydrogels samples at fixed angular frequency 10 rad s<sup>-1</sup>(c); frequency sweep curve for hydrogels at fixed strain 0.5% (d); viscosity of SPC3H at pH 5.8 and 7.0 (e).

In order to optimize the viscoelastic behavior of hydrogels their rheological behavior was investigated as a function of [5'- CMP] ranging from 1.5 to 3.5 mM at pH 5.8 and these samples have been abbreviated as: [5'- CMP] (mM) (abbreviation) - 1.5 (SPC2H); 2.5 (SPC3H) and 3.5 (SPC4H) (Fig. S17; Table S7). The storage modulus (G') was always higher than that of the loss modulus (G'') (Table S7). Whereas, the viscosity follows the order: SPC2H < SPC3H > SPC4H (Fig. S17a), indicating that the viscosity initially increases with increasing the [5'-CMP] and, thereafter it is decreased. The stability of hydrogel was further examined by monitoring the viscosity as a function of shear rate (Fig. S17b). For all the samples it was found to decrease with increasing the shear rate, indicating the formation of hydrogels in all these samples. From rheological data it is observed that the best viscoelastic properties correspond to SPC3H suggesting that 2.5 mM [5'- CMP] produced the most stable hydrogel.

| Samples at pH<br>5.8 | Viscosity<br>(cP) | Storage<br>modulus G' | Loss modulus<br>G'' (Pa) | Cross over                              | Ratio of |
|----------------------|-------------------|-----------------------|--------------------------|-----------------------------------------|----------|
|                      |                   | (Pa)                  |                          | (////////////////////////////////////// | -,-      |
| SPC4H (3.5<br>mM)    | 384               | 5696                  | 292                      | 5.7                                     | 19.5     |
| SPC3H (2.5<br>mM)    | 410               | 4932                  | 242                      | 5.9                                     | 20.4     |
| SPC2H                | 390               | 5225                  | 250                      | 5.4                                     | 20.9     |
| (1.5 mM)             |                   |                       |                          |                                         |          |

**Table S7** Rheological data for different hydrogels samples at pH 5.8.