Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Mild and efficient rhodium-catalyzed deoxygenation of ketones to alkanes

Gilles Argouarch

Université de Rennes 1

UMR CNRS 6226 / Institut des Sciences Chimiques de Rennes (ISCR)

UFR des Sciences Pharmaceutiques et Biologiques 2, avenue du Professeur L. Bernard F-35043 Rennes / FRANCE

New Journal of Chemistry

Supporting information:

- I General procedure for deoxygenation of ketones and hydrogenolysis of alcohols
- II Results and analytical data
- III ¹H and ¹³C NMR spectra of all isolated compounds
- IV ¹H NMR spectra of unpurified compounds
- V Hydrosilylation of compounds 1v and 1w

All NMR spectra were recorded on a Bruker Avance 300 instrument in CDCl₃. Chemical shifts (δ) are reported in parts per million (ppm) relatively to TMS or CDCl₃ as internal standard.

I General procedure for deoxygenation of ketones and hydrogenolysis of alcohols

In a round-bottom flask under argon, the substrate (1 mmol) and the catalyst (3.9 mg, 0.01 mmol) were dissolved in DCM (3 mL). After addition of the silane (2 mmol) at 0 °C, the reaction mixture was slowly warmed to RT and stirred for 24 h. The volatile material was evaporated and the residue was purified by silica gel column chromatography.

II Results and analytical data

4-Ethyl-1,1'-biphenyl (3a). Pentane. White solid (from **1a**: 152 mg, 84% yield; from **2a**: 161 mg, 88% yield). ¹H NMR (300 MHz, CDCl₃, ppm): δ = 7.59-7.50 (m, 4H), 7.44-7.39 (m, 2H), 7.33-7.25 (m, 3H), 2.68 (q, *J* = 9.0 Hz, 2H), 1.27 (t, *J* = 9.0 Hz, 3H); ¹³C{¹H} NMR (75 MHz, CDCl₃, ppm): δ = 143.5, 141.3, 138.7, 128.8, 128.4, 127.2, 127.1, 127.0, 28.6, 15.7.

2-Ethylnaphthalene (3b). Pentane. Colorless oil (129 mg, 83% yield). ¹H NMR (300 MHz, CDCl₃, ppm): δ = 7.80-7.74 (m, 3H), 7.61 (s, 1H), 7.43-7.32 (m, 3H), 2.80 (q, *J* = 9.0 Hz, 2H), 1.31 (t, *J* = 9.0 Hz, 3H); ¹³C{¹H} NMR (75 MHz, CDCl₃, ppm): δ = 141.8, 133.8, 132.0, 127.9, 127.7, 127.5, 127.2, 125.9, 125.6, 125.1, 29.1, 15.6.

1-Ethyl-4-methylbenzene (**3e**). Pentane. Colorless oil (75 mg, 63% yield). ¹H NMR (300 MHz, CDCl₃, ppm): δ = 7.08 (s, 4H), 2.60 (q, *J* = 9.0 Hz, 2H), 2.31 (s, 3H), 1.21 (t, *J* = 9.0 Hz, 3H); ¹³C{¹H} NMR (75 MHz, CDCl₃, ppm): δ = 141.3, 135.1, 129.1, 127.8, 28.5, 21.1, 15.9.

1-Ethyl-2-methylbenzene (3f). Pentane. Colorless oil (80 mg, 67% yield). ¹H NMR (300 MHz, CDCl₃, ppm): *δ* = 7.16-7.11 (m, 4H), 2.63 (q, *J* = 9.0 Hz, 2H), 2.30 (s, 3H), 1.21 (t, *J* = 9.0 Hz, 3H); ¹³C{¹H} NMR (75 MHz, CDCl₃, ppm): *δ* = 142.4, 135.8, 130.1, 128.0, 126.1, 125.8, 26.3, 19.3, 14.5.

1,2,3,4-Tetrahydronaphthalene (**3g**). Pentane. Colorless oil (82 mg, 62% yield). ¹H NMR (300 MHz, CDCl₃, ppm): δ = 7.07 (d, *J* = 3.5 Hz, 2H), 7.06 (d, *J* = 3.5 Hz, 2H), 2.79-2.75 (m, 4H), 1.82-1.77 (m, 4H); ¹³C{¹H} NMR (75 MHz, CDCl₃, ppm): δ = 137.2, 129.2, 125.5, 29.5, 23.3.

Ethylferrocene (3j). Pentane. Yellow solid (188 mg, 88% yield). ¹H NMR (300 MHz, CDCl₃, ppm): $\delta = 4.10$ (s, 5H), 4.06 (d, J = 4.0 Hz, 2H), 4.03 (d, J = 4.0 Hz, 2H), 2.34 (q, J = 6.0 Hz, 2H), 1.17 (t, J = 6.0 Hz, 3H); ¹³C{¹H} NMR (75 MHz, CDCl₃, ppm): $\delta = 91.2$, 68.5, 67.5, 67.0, 22.3, 14.7.

Benzylferrocene (3k). Cyclohexane/Et₂O (49/1). Orange solid (260 mg, 94% yield). ¹H NMR (300 MHz, CDCl₃, ppm): δ = 7.24-7.15 (m, 5H), 4.10 (s, 5H), 4.07 (s, 4H), 3.68 (s, 2H); ¹³C{¹H} NMR (75 MHz, CDCl₃, ppm): δ = 141.7, 128.4, 128.3, 126.0, 88.0, 68.7, 68.7, 67.6, 36.1.

1-Ethyl-4-methoxybenzene (3l). Cyclohexane/Et₂O (49/1). Colorless oil (from **1l**: 80 mg, 59% yield; from **2l**: 100 mg, 74% yield). ¹H NMR (300 MHz, CDCl₃, ppm): δ = 7.10 (d, *J* = 8.8 Hz, 2H), 6.82 (d, *J* = 8.8 Hz, 2H), 3.77 (s, 3H), 2.58 (q, *J* = 6.0 Hz, 2H), 1.21 (t, *J* = 6.0 Hz, 3H); ¹³C{¹H} NMR (75 MHz, CDCl₃, ppm): δ = 157.7, 136.5, 128.8, 113.8, 55.3, 28.1, 16.0.

6-Methoxy-1,2,3,4-tetrahydronaphthalene (3m). Pentane/Et₂O (99/1). Colorless oil (112 mg, 69% yield). ¹H NMR (300 MHz, CDCl₃, ppm): δ = 6.96 (d, *J* = 9.0 Hz, 1H), 6.68-6.60 (m, 2H), 3.76 (s, 3H), 2.74-2.69 (m, 4H), 1.79-1.74 (m, 4H); ¹³C{¹H} NMR (75 MHz, CDCl₃, ppm): δ = 157.4, 138.2, 130.0, 129.3, 113.7, 111.8, 55.3, 29.8, 28.6, 23.5, 23.3.

Diphenylmethane (3r). Pentane. White solid (from **1r**: 130 mg, 77% yield; from **2r**: 117 mg, 70% yield). ¹H NMR (300 MHz, CDCl₃, ppm): δ = 7.30-7.16 (m, 10H), 3.97 (s, 2H); ¹³C{¹H} NMR (75 MHz, CDCl₃, ppm): δ = 141.2, 129.0, 128.5, 126.1, 42.0.

4-Ethylphenol (3s). PE/Et₂O (9/1). Colorless oil (55 mg, 45% yield). ¹H NMR (300 MHz, CDCl₃, ppm): δ = 7.06 (d, *J* = 9.0 Hz, 2H), 6.75 (d, *J* = 9.0 Hz, 2H), 4.63 (s, 1H), 2.57 (q, *J* = 9.0 Hz, 2H), 1.20 (t, *J* = 9.0 Hz, 3H); ¹³C{¹H} NMR (75 MHz, CDCl₃, ppm): δ = 153.5, 136.7, 129.0, 115.2, 28.1, 16.0.

4-(Triethylsilyloxy)acetophenone (4). PE/Et₂O (9/1). Colorless oil (75 mg, 30% yield). ¹H NMR (300 MHz, CDCl₃, ppm): δ = 7.87 (d, *J* = 8.5 Hz, 2H), 6.88 (d, *J* = 8.5 Hz, 2H), 2.55 (s, 3H), 1.00 (t, *J* = 6.0 Hz, 9H), 0.77 (q, *J* = 6.0 Hz, 6H); ¹³C{¹H} NMR (75 MHz, CDCl₃, ppm): δ = 196.9, 160.3, 130.9, 130.6, 119.8, 26.4, 6.6, 5.1.

1,3-Diphenylpropan-1-one (6). PE/Et₂O (9/1). Colorless oil (160 mg, 76% yield). ¹H NMR (300 MHz, CDCl₃, ppm): δ = 7.93 (d, *J* = 9.0 Hz, 2H), 7.53-7.40 (m, 3H), 7.29-7.19 (m, 5H), 3.28 (t, *J* = 6.0 Hz, 2H), 3.06 (t, *J* = 6.0 Hz, 2H); ¹³C{¹H} NMR (75 MHz, CDCl₃, ppm): δ = 199.2, 141.3, 136.9, 133.1, 128.6, 128.6, 128.5, 128.1, 126.2, 40.5, 30.2.

2-Phenylchroman-4-one (7). Cyclohexane/Et₂O (19/1). Off white solid (119 mg, 53% yield). ¹H NMR (300 MHz, CDCl₃, ppm): δ = 7.94 (dd, *J* = 8.1 and 2.4 Hz, 1H), 7.54-7.38 (m, 6H), 7.08-7.03 (m, 2H), 5.48 (dd, *J* = 13.2 and 3.0 Hz, 1H), 3.10 (dd, *J* = 17.0 and 13.2 Hz, 1H), 2.88 (dd, *J* = 17.0 and 3.0 Hz, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃, ppm): δ = 192.1, 161.6, 138.8, 136.3, 129.0, 128.9, 127.1, 126.2, 121.7, 121.0, 118.2, 79.7, 44.8.

III ¹H and ¹³C NMR spectra of all isolated compounds

130 120 . 80 . 50

IV ¹H NMR spectra of unpurified compounds

V Hydrosilylation of compounds 1v and 1w

1,3-Diphenylpropan-2-ol (2v). In a round-bottom flask under argon, ketone **1v** (210 mg, 1 mmol) and the catalyst (3.9 mg, 0.01 mmol) were dissolved in DCM (3 mL). After addition of HSiEt₃ (0.32 mL, 2 mmol) at 0 °C, the reaction mixture was slowly warmed to RT and stirred for 24 h. Aqueous NaOH (1 M, 5 mL) was added and the reaction was stirred for 2 h. The reaction medium was quenched with aqueous HCl (2 M, 5 mL) and extracted with DCM. The combined organic layers were washed with water and dried over anhydrous MgSO₄. After filtration, the volatile material was evaporated and the residue was purified by silica gel column chromatography eluting with Cyclohexane/Et₂O (3/1) to afford **2v** as a colorless oil (176 mg, 83% yield).

Ethyl mandelate (2w). In a round-bottom flask under argon, ketone 1w (160 μ L, 1 mmol) and the catalyst (3.9 mg, 0.01 mmol) were dissolved in DCM (3 mL). After addition of HSiEt₃ (0.32 mL, 2 mmol) at 0 °C, the reaction mixture was slowly warmed to RT and stirred for 24 h. Aqueous NaOH (1 M, 5 mL) was added and the reaction was stirred for 2 h. The reaction medium was quenched with aqueous HCl (2 M, 5 mL) and extracted with DCM. The combined organic layers were washed with water and dried over anhydrous MgSO₄. After filtration, the volatile material was evaporated. Despite repeated attempts to purify 2w by silica gel column chromatography, unseparable silylated by-products remained present in the sample.

