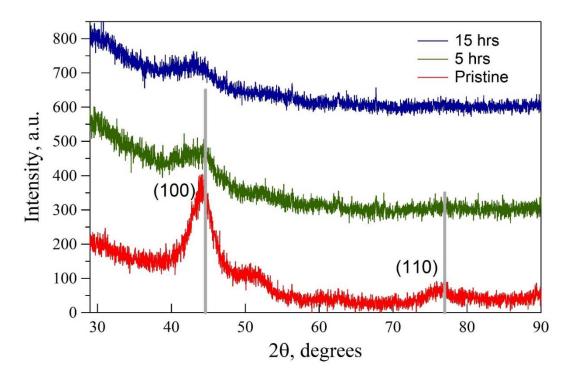
Supporting Information

CFx Primary Batteries Based on Fluorinated Carbon Nanocages

Aleksei. V. Sosunov^a, Dominika A. Ziolkowska^{bc}[†], Roman. S. Ponomarev^a, Viktor K. Henner^{a,d}, Bhupendra Karki^d, Nathan Smith^d, Gamini Sumanasekera^{bd}, Jacek B. Jasinski^d*


^a Perm State University, Perm, 614990 Russia

^b Conn Center for Renewable Energy, University of Louisville, Louisville, KY, 40292, USA

^c Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland

^d Department of Physics and Astronomy, University of Louisville, Louisville, KY, 40292, USA

*Corresponding author: jacek.jasinski@louisvill.edu

1. XRD and HRTEM results

Figure S1. X-ray Diffraction patterns for pristine and progressively fluorinated CNCs.

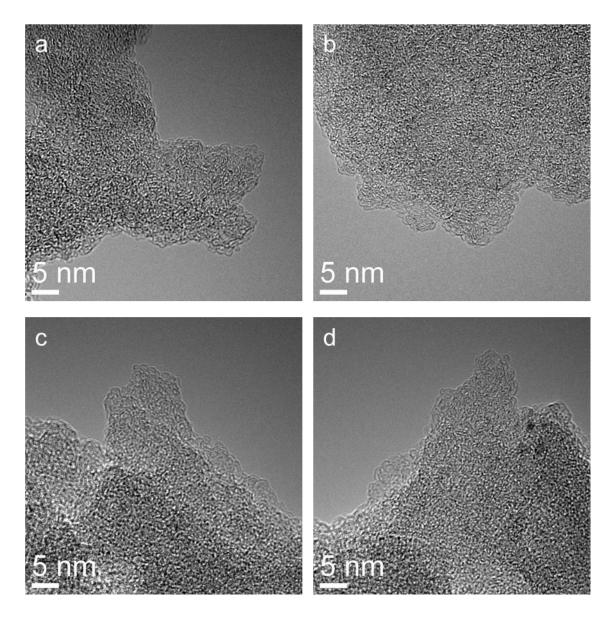


Figure S2. HRTEM images of the 3 hrs fluorinated sample.

2. Tap density and charge capacity

The tap density measurements were performed and following parameters were obtained:

- m (mass of CNCs) = 0.0301 g.
- V_o (unsettled volume) = 0.06 ml
- $V_{\rm f}$ (tapped volume) = 0.05 ml

This gives the following:

- Tapped density = $m/V_f = 0.602 \text{ g/ml}$
- Hausner ratio = $V_o/V_f = 1.2$
- Compressibility index = $100 (V_o V_f) / V_o = 16.67$

The obtained tap density value and the charge capacity of 850 mAh/g at 2 V gives 1700 Wh/kg and 2824 Wh/L. Commercial Li-CFx batteries have the energy density of ~780 Wh/kg and 1478 Wh/L.