Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

New anthrahydrazone derivatives and their cisplatin-like complexes:

Synthesis, antitumor activity and structure-activity relationship

Rui-Xue Liu[†], Ying-Shu Wu[†], Yan-Cheng Liu^{*}, Ru-Yi Luo, Li-Dong Yang, Meng-Ting Tang, Zhen-Feng Chen, Hong Liang^{*}

State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources,School of Chemistry & Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P.R. China

[†] The authors contribute equally to this work.

*Corresponding authors' E-mail addresses: ycliu@gxnu.edu.cn (Y.-C. Liu); hliang@gxnu.edu.cn (H. Liang); Tel./Fax: +86-773-2120958

Selected bond (Å)			
Pt complex 1		Pt complex 2	Pt complex 2	
Pt1-Cl1	2.279(2)	Pt1-Cl1	2.2854(12)	
Pt1-Cl2	2.289(2)	Pt1-C12	2.2866(12)	
Pt1–N1	1.975(7)	Pt1–N1	1.995(4)	
Pt1–N4	2.001(6)	Pt1–N4	2.015(3)	
		·		
Selected angles	(°)			
Pt complex 1		Pt complex 2		
C11 D41 C12	00.00(0)	C11 D41 C12	90.06(5)	

Table S1. Selected bonds lengths and angles for the platinum(II) complexes 1 and 2

Cl1–Pt1–Cl2 88.80(9) Cl1–Pt1–Cl2 89.06(5) 95.9(2) N1-Pt1-Cl1 95.78(11) N1-Pt1-Cl1 N1-Pt1-Cl2 175.26(19) N1-Pt1-Cl2 175.14(11) 80.2(3) N1-Pt1-N4 80.61(14) N1-Pt1-N4 112.4(2) N3-N4-Pt1 112.4(4) N3-N4-Pt1 C3–N1–Pt1 129.6(7) C3–N1–Pt1 129.4(3) C12-C13-C14 122.4(8) O1-C14-C13 123.1(5)

Figure S1. The percentages for the different phases of the cell cycle in T-24 cells arrested by 9-

Figure S2. The percentages for the different phases of the cell cycle in T-24 cells arrested by **cisplatin**, with the same concentrations as 9-PMAH-Pt.

Figure S3. The percentages for the different phases of the cell cycle in MGC-803 cells arrested by **cisplatin**, with the same concentrations as 9-PMAH-Pt.

Figure S4. The cell apoptosis in T-24 cells induced by 9-PMAH in different concentrations related with IC_{50} value.

Figure S5. The cell apoptosis in T-24 cells induced by **cisplatin**, with the same concentrations as 9-PMAH-Pt

Figure S6. The cell apoptosis in MGC-803 cells induced by **cisplatin**, with the same concentrations as 9-PMAH-Pt

Figure S7. The fluorescence emission spectra of GR-DNA in the absence (dashed line) and the presence (solid lines) of 9-PMAH with increasing concentrations ([GR]/[DNA]/[9-PMAH] range from 1:10:0.01 to 1:10:0.09).

Figure S8. Inhibitory abilities of (S)-10-Hydroxycamptothecin on topoisomerase type I (Topo I)

(S)-10-Hydroxycamptothecin

The spectral characterizations for both the ligands and both the Pt(II) complexes:

9-PMAH: ¹H-NMR (500 MHz, *d*₆-DMSO) δ 11.47 (s, 1H), 9.40 (s, 1H), 8.79 (d, J=8.9 Hz, 2H), 8.66 (s,1H), 8.54 (d, J=4.7 Hz, 2H), 8.14 (d, J=8.3 Hz, 2H), 7.63 (s,

2H), 7.57 (s, 2H), 6.90 (t, J=4.7 Hz, 1H).

9-PMAH: ¹³C-NMR (126 MHz, *d*₆-DMSO) δ 160.01, 158.48, 140.55, 131.00, 129.37, 128.89, 128.59, 126.84, 125.93, 125.44, 125.06, 113.20.

APMAH: ¹H NMR(500 MHz, *d*₆-DMSO): δ 11.67 (s, 1H), 11.47 (s, 1H), 9.33 (s, 1H), 8.96 (d, J=8.8 Hz, 2H), 8.73 (d, J=8.8 Hz, 2H), 8.55 (d, J=4.8 Hz, 2H), 7.76 (s, 2H), 7.69 (s, 2H), 6.94 (t, J=4.5Hz ,1H).

APMAH: ¹³C NMR(126MHz, *d*₆-DMSO): δ 195.35, 160.35, 159.01, 140.19, 134.53,

131.09, 129.27, 129.01, 127.10, 126.61, 126.54, 124.41, 114.15.

9-PMAH: IR (KBr): 3781, 3438, 1593, 1542, 1448, 1417, 1128, 728, 575 cm⁻¹

9-PMAH-Pt: IR (KBr): 3781, 3434, 2975, 2274, 1627, 1560, 1527, 1441, 1327, 1260, 1215, 1099, 946, 891, 732, 582m⁻¹.

APMAH: IR (KBr): 3424, 2974, 2378, 1582, 1449, 1412, 1050, 757 cm⁻¹

APMAH-Pt: IR (KBr): 3396, 2974, 2892, 1610, 1521, 1440, 1089, 1049, 881, 742 cm⁻¹

9-PMAH: m/z: 299.13 [M+H]⁺

9-PMAH-Pt: m/z: 562.02 for [Pt^{II}Cl₂(9-PMAH)–H]⁻

APMAH: m/z: 327.12 [M+H]⁺

APMAH-Pt: m/z: 640.07 for [Pt^{II}Cl₂(APMAH)+EtOH+H]⁺