Rhodamine functionalized mesoporous silica as chemosensor for efficient sensing of Al^{3+} , Cr^{3+} and Fe^{3+} ions and their removal from aqueous medium

Debdas Singha,^a Trisha Das,^a Lanka Satyanarayana,^b Partha Roy^{*c} and Mahasweta Nandi^{*a}

^aIntegrated Science Education and Research Centre, Siksha Bhavana, Visva-Bharati University, Santiniketan-731235, India

E-mail: mahasweta.nandi@visva-bharati.ac.in

^bAnalytical Chemistry Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India

^cDepartment of Chemistry, Jadavpur University, Jadavpur, Kolkata-700 032, India E-mail: partha.roy@jadavpuruniversity.in; proy@chemistry.jdvu.ac.in

Fig. s1 FT-IR spectra of (a) SBA-15, (b) APTES functionalized SBA-15, (c) TFMS, (d) RFMS and (e) Al-bound RFMS.

Fig. s2 ²⁹Si MAS NMR spectra of TFMS and RFMS.

Fig. s3 ¹³C CP MAS NMR spectra of TFMS and RFMS.

Fig. s4 Thermogravimetric analysis of (a) SBA-15, (b) 3-APTES loaded SBA-15, (c) **TFMS** and (d) **RFMS**.

Fig. s5 UV-vis spectra of RFMS (0.05 g/L) in absence and in the presence of different metal ions (120 μ M) in water/ethanol (14:1, v/v) at room temperature.

Fig. s6 Plot of absorbance of **RFMS** (at 530 nm) versus concentration of Al^{3+} ion.

Fig. s7 Plot of absorbance of **RFMS** (at 530 nm) versus concentration of Cr^{3+} ion.

Fig. s8 Plot of absorbance of RFMS (at 530 nm) versus concentration of Fe^{3+} ion.

Fig. s9 Fluorescence spectra of **RFMS** (0.05 g/L) in absence and in the presence of different metal ions (120 μM) in water/ethanol (14:1, v/v) at room temperature.

Fig. s10 Plot of fluorescence intensity of RFMS (at 550 nm) versus concentration of Al^{3+} ion.

Fig. s11 Plot of fluorescence intensity of RFMS (at 550 nm) versus concentration of Cr^{3+} ion.

Fig. s12 Plot of fluorescence intensity of **RFMS** (at 550 nm) versus concentration of Fe^{3+} ion.

Determination of LOD of RFMS:

Limit of detection (LOD) for our probe has been determined by 3σ method by the following equation: DL = K* Sb1/S. Where K = 2 or 3 (3 in this case); here Sb1 is the standard deviation of the blank solution (Fig. s13); and S is the slope of the calibration curve obtained from Linear dynamic plot of F.I. vs [M³⁺] µM (Fig. s14, s15 and s16). Here Sb1= 949.1195, S= 526941.52 (for Al³⁺), 310077.16 (for Cr³⁺) and 3939.36 (for Fe³⁺). LOD of Al³⁺ = (3 × 949.1195)/ (541803.820) = 5.40 nM

LOD of $Cr^{3+} = (3 \times 949.1195)/(448979.334) = 9.18 \text{ nM}$

LOD of $\text{Fe}^{3+} = (3 \times 949.1195) / (4566.881) = 722.80 \text{ nM}$

Fig. s13 Determination of Sb1 of the blank, RFMS in solution.

Fig. s14 Linear dynamic plot of F.I. (at 550 nm) vs. $[AI^{3+}]$ for the determination of S (slope).

Fig. s15 Linear dynamic plot of F.I. (at 550 nm) vs. $[Cr^{3+}]$ for the determination of S (slope).

Fig. s16 Linear dynamic plot of F.I. (at 550 nm) vs. [Fe³⁺] for the determination of S (slope).

Fig. s17 Excited state fluorescence decay behavior of **RFMS** and and its complexes Al^{3+} , Cr^{3+} and Fe³⁺ ions in ethanol/water mixture (1:14, v/v) at room temperature.

Determination of various cations adsorbed on RFMS by Titrimetric Method Strength of the stock solutions:

- Zn-acetate =1.002 (M/100)
- Lead nitrate=1.001 (M/100)
- Potassium dichromate=1.004 (N/100)
- $Na_2EDTA = 1.005 (M/100)$

Determination of Fe³⁺

Estimated by direct titration with potassium dichromate solution.

Volume of Potassium dichromate solution need for 25 mLof iron solution = 23.7mL

Volume of Potassium dichromate solution need for 25 mL of iron solution treated with 0.10 g of RFMS =15.4 mL

Therefore in 25 mL of iron solution Fe^{3+} present = 0.01328g

After treating with **RFMS** in 25 ml of iron solution Fe^{3+} present = 0.00863 g

Amount of Fe^{3+} adsorbed by 0.10 g of **RFMS** = 0.00465 g

Determination of Zn²⁺

Estimated by direct titration with Na₂EDTA solution.

Volume of Na₂EDTA solution need for 25 mL of zinc solution =23.1 mL

Volume of Na₂EDTA solution need for 25 mL of zinc solution treated with 0.10 g of RFMS =22 mL

Therefore in 25 ml of zinc solution, Zn^{2+} present = 0.01517 g

After treating with 0.10 g of **RFMS** in 25 mLof zinc solution, Zn^{2+} present = 0.01445 g

Amount of Zn^{2+} adsorbed by 0.10 g of **RFMS** =0.00072 g

Determination of Pb²⁺

Estimated by back titration of excess Na_2EDTA with zinc acetate solution. (25 mL metal ion + 50mL Na_2EDTA solution)

Volume of zinc acetate solution need for 25 mL of Pb^{2+} solution = 25.6 mL

Volume of zinc acetate solution need for 25 mL of Pb^{2+} solution treated with 0.10 g of RFMS = 26.2 mL

Therefore in 25 mL of lead solution Pb^{2+} present = 0.050333 g After treating with 0.10 g of **RFMS** in 25 mL of lead solution Pb^{2+} present= 0.049827 g Amount of Pb^{2+} adsorbed by 0.10 g of **RFMS** = 0.000503 g

For mixture also 0.10 g of RFMS is taken in every case

Determination of Pb^{2+} and $Fe^{3+}in a$ mixture Iron adsorbed =0.0034 g Lead adsorbed = 0.00221 g

Determination of Zn^{2+} and Fe^{3+} in a mixture Iron adsorbed =0.00425 g Zincadsorbed = 0.00121 g

S1	Probe	Metal ion	Excitation	Fluorescence	LOD (M)	Linearity	Application	Removal	Maximum	Ref
No.		analyzed	(nm)/	intensity		range		efficiency	uptake	
1		A 1 ³⁺ C ³⁺	Emission (nm)	enhancement	$2.1 < 10^{-6}$	0 + 20 1	.		capacity	20
1		AI^{*}, Cr^{*}	colorimetric detection (color change: colorless to yellow);		2.16×10^{-1}	0 to 30 μ I	Logic gate			20
		and Fe			(AI), 1.27 × 10^{-8} (Cr ³⁺)	(AI), 0 to 00				
			absorption ba	nu at 423 mm	$\times 10^{\circ}$ (Cl)	μ (C1) and μ				
	Ť				10^{-8} (Fe ³⁺)	$(Fe^{3+})^{***}$				
2		Al^{3+}, Cr^{3+}	480/583		$0.22 imes 10^{-6}$	Not	No			21
		and Fe ³⁺			(Al ³⁺),	mentioned				
					0.63×10^{-6}					
					(Cr^{3+}) and					
					0.14×10^{-6}					
					(Fe ³⁺)					
3		Al^{3+}, Cr^{3+}	502/558	31 (Al)	1.34×10^{-6}	Not	(i) Logic			22
		and Fe ³⁺		26 (Cr)	$(Al^{3+}), 2.28$	mentioned	gate			
				41 (Fe)	$\times 10^{\circ} (Cr^{-1})$		(ii) Cell			
					and 1.28×10^{-6} (Eo ³⁺)		imaging			
					10 (14)					
4	OH	Al^{3+}, Cr^{3+}	500/552	98 (Al) 50	1.18×10^{-9}	Not	Logic gate			23
		and Fe ³⁺		(Cr) 38 (Fe)	$(Al^{3+}), 1.80$	mentioned				
					$\times 10^{-1} (Cr^{-1})$					
					10^{-9} (Fe ³⁺)					
5		Al^{3+}, Cr^{3+}	Colorimetric detection (color		2.8×10^{-7}	Not	Logic gate			40
		and Fe ³⁺	change: colo	rless to light	$(Al^{3+}), 2.5 \times$	mentioned	0 0			
			yellow); absorption band at		$10^{-7} (Cr^{3+})$					
			~420 nm		and $1.\times 10^{-7}$					
		2			$({\rm Fe}^{3+})$					
6		Zn^{2+}	360/509		1.08×10^{-7}	0–6 µM	Removal of		157.2 mg/g	25a
							metal 10n		(adsorption	
	NH NH								capacity)	

Table S1	Comparison	of some parameters	of some recently	published	related	research v	works
----------	------------	--------------------	------------------	-----------	---------	------------	-------

7	HO	Al ³⁺	325/427	8.5	17.84×10^{-6}	Not mentioned	Removal of metal ion	87.4%		26
8		Hg ²⁺	497/552		0.1 × 10 ⁻⁹	1.0–100.0 nM	Analysis of metal ion in real sample	109.5% recovery		27a
9		Hg ²⁺	500/580		1.5×10^{-8}	Not mentioned	Logic gate			27b
10		Hg ²⁺	530/589		9.05×10^{-7}	$0-6 \times 10^{-5} \mathrm{M}$	(i) Removal of metal ion (ii) cell imaging		115.47 mg/g (adsorption capacity)	28
11	RFMS	Al ³⁺ , Cr ³⁺ and Fe ³⁺	500/550	145 (Al) 174 (Cr) 30 (Fe)	$\begin{array}{c} 23.5 \times 10^{-9} \\ (Al^{3+}), 13.4 \\ \times 10^{-9} (Cr^{3+}) \\ and 69.7 \times \\ 10^{-9} (Fe^{3+}) \end{array}$	0-15 μ M (Al ³⁺), 2.5- 12.5 μ M (Cr ³⁺) and 0- 10 μ M (Fe ³⁺)	Removal of metal ion	97.28 (Al) 97.06 (Cr) 96.87 (Fe)	11.20 (Al), 19.72 (Cr) and 21.55 (Fe) mg/g	Present study

.....

*** Stock solution of the metal ion is 1×10^{-3} M