Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information (ESI)

An incisive optical recognition of monohydrogen phosphate by a fluorescein based chemodosimeter

Sharad Kumar Asthana,^a Abha Pandey, ^a Ajit Kumar,^b and K. K. Upadhyay^a*

^aDepartment of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India-221005, ^bDepartment of Applied Sciences & Humanities, National Institute of Foundry & Forge Technology, Ranchi-834003, Jharkhand, India *Corresponding author: Tel: +91 542 670 2488 **E-mail:** drkaushalbhu@ yahoo.co.in; kku@bhu.ac.in, Tel: +91-542-6702488

EXPERIMENTAL

1.1 Apparatus:

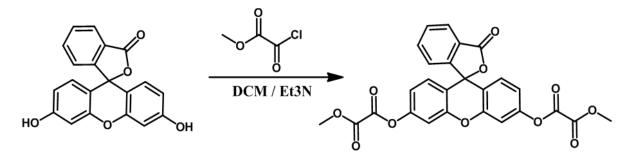
The IR Spectra for the receptor **FLH** was recorded on JASCO-FTIR Spectrophotometer while ¹H NMR and ¹³C NMR spectra for the same were recorded on a JEOL AL 300 FT NMR Spectrometer. Mass spectrometric analysis was carried out on a MDS Sciex API 2000 LCMS/Brukar Compass data analysis spectrometer. Electronic spectra were recorded at room temperature (298 K) on a UV-1700 pharmaspec spectrophotometer with quartz cuvette (path length= 1.0cm). Emission spectra were recorded on JY HORIBA Fluorescence spectrophotometer.

1.2 Materials:

All reagents for synthesis were purchased from Sigma-Aldrich and were used without further purification.

1.3 General Methods:

All titration experiments were carried at room temperature. All the anions were used as their TBA salts. The ¹H NMR spectra were recorded by using tetramethylsilane (TMS) as an internal reference standard. For the ¹H NMR titration spectra of **FLH**, 5×10^{-3} Msolutions were prepared in DMSO- d_6 while the stock solution of HPO₄^{2⁻} was prepared in DMSO- d_6 . For UV-visible/fluorescence titration experiments, the solutions of cations were prepared in aqueous medium. Chloride salt of metal ions was used for solution preparation. Due to insufficient solubility of **FLH** in water, its stock solution of 0.25 M was prepared in DMSO which was used for fluorescence titration experiment in EtOH: water (3: 2, v/v)at 1.0µM concentration through dilution.

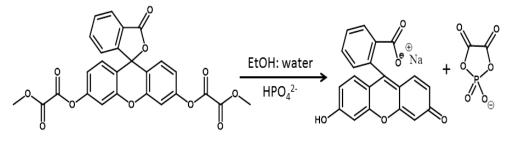

1.4. Materials and Instrumentation

All solvents and reagents (analytical and spectroscopic grade) were obtained from Sigma-Aldrich and were used as received. Solutions of various anions were prepared as their TBA salts. The chemical shifts (δ) are reported in ppm, relative to tetramethylsilane [Si(CH₃)₄]. The UV-vis. absorption spectra were recorded at 25°C using a UV-1700 pharmaspec spectrophotometer. Emission spectra were recorded on Varian Cary Eclipse Fluorescence spectrophotometer and JY HORIBA Fluorescence spectrophotometer. The IR Spectra were recorded on JASCO-FTIR Spectrophotometer while ¹H NMR spectra were recorded on JEOL AL 300 FT NMR Spectrometer. Mass spectrometric analysis was carried out on a MDS Sciex API 2000 LCMS spectrometer.

Synthesis of Receptor FLH

To the mixture of fluorescein (0.15g, 0.45mmol) and triethylamine (0.2mL) in 15 mL anhydrous dichloromethane (CH₂Cl₂) at 0°C; methylchlorooxoacetate (0.5 mL, in 5 mL of CH₂Cl₂) was added drop wise with constant stirring over the time period of 30 min. The reaction mixture was warmed at room temperature and was further stirred overnight (**Scheme 1**). The solution was diluted with CH₂Cl₂ (30 mL), washed with brine (30 mL × 2), and then dried over anhydrous Na₂SO₄. The solvent was removed in vacuum to obtain a crude solid mixture. Finally, the target compound **FLH** was isolated as a yellow solid (70% yield) by silica chromatography eluting with CH₂Cl₂. The purity of **FLH** was checked by thin layer chromatography (TLC). The probe **FLH** was fully characterized by ¹H &¹³C NMR, IR along with ESI-MS spectrometry (**ESI; Figure 1 to 4**).

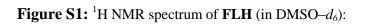
Spectroscopic characterization data of FLH: Yield: 64%; **IR/cm**⁻¹: 3401, 3102, 2924, 2854, 1538, 1523, 1766, 1435, 1364, 1109, 1090, 925, 820; ¹H NMR: (**300 MHz, DMSO-***d*₆, **TMS**): $\delta = 8.97$ (d, 1H, ArH), 7.8-7.7 (m, 1H, ArH), 7.44 (d, 2H, ArH), 7.07, 6.96 (d,d 3H, ArH), 3.87 (s, 3H, CH₃-); ¹³C NMR (75 MHz, DMSO-*d*₆, TMS): $\delta = 172.40$, 169.29, 166.21, 156.53, 154.66, 151.29, 150.72, 129.25, 125.33, 124.96, 123.92, 117.91, 116.93, 110.09, 102.21, 80.62; **ESI-MS**: m/z Calculated for C₂₆H₁₅NO₉S [M] = 504, Found [M+1] = 505.2.

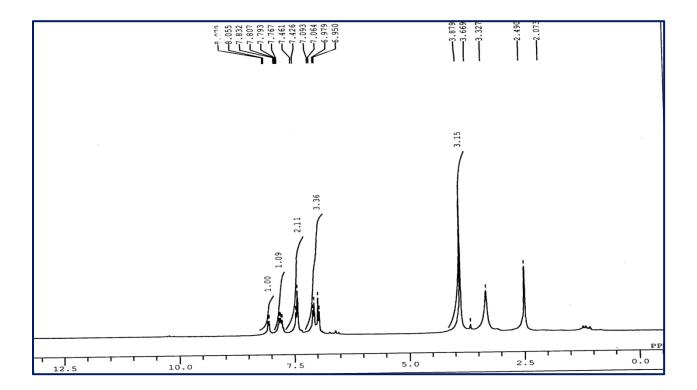


Scheme 1. Synthesis of receptor FLH.

Synthesis of FLHP

Mono basic phosphate adduct of **FLH** i.e. **FLHP** was synthesized by adding 3 mL aqueous solution of $HPO_4^{2-}(1.5 \text{ mmol})$ slowly to a magnetically stirred 10 mL ethanol: water (3: 2, v/v) solution of **FLH** (0.5 mmol) (**Scheme 2**). The mixture was further stirred at room temperature for $_2$ hours where by a yellowish precipitate was formed. The same was filtered and washed several times with diethyl ether and finally dried under vacuum over anhydrous CaCl₂.The probe **FLHP** was fully characterized by ¹H &¹³C NMR, IR along with ESI-MS spectrometry (**ESI; Figure 5 to 8**).


Spectroscopic characterization data of complex FLHP: Yield: 40%; **IR/cm**⁻¹: 3427, 2963, 2876, 2169, 1707, 1634, 1575, 1523, 1486, 1468, 1421, 1387, 1345, 1226, 1209, 1167, 1105, 1033, 882, 740; ¹H **NMR**: (**300 MHz, DMSO-***d*₆, **TMS**): $\delta = 10.12$ (s, 1H), 8.12 (d, 1H, Ar), 8.02-7.98 (m, 3H, Ar), 7.82-7.74 (m, 2H, Ar), 7.71 (s, 1H, Ar), 7.38-6.51 (m, 3H, Ar), 3.91 (s, 3H, OCH₃); ¹³C **NMR (75 MHz, DMSO-***d*₆, **TMS**): $\delta = 211.68$, 168.29, 159.67, 156.50, 154.68, 152.06, 151.44, 151.20, 150.76, 135.46, 130.38, 130.04, 129.11, 128.76, 128.08, 125.83, 124.59, 123.87, 100.00, 109.83, 109.43, 105.24, 51.90; **ESI-MS**: m/z Calculated for C₂₀H₁₁NaO₅ [M] = 354 found [M-1] = 353.1.



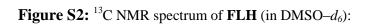

Scheme 2. Synthesis of FLHP.

Figure and Captions

S. No.	Figures	Captions	Page No.
1.	Figure S1	¹ H NMR spectrum of FLH (in DMSO– d_6).	5
2.	Figure S2	¹³ C NMR spectrum of FLH (in DMSO– d_{δ}).	6
3.	Figure S3	IR spectrum of FLH .	7
4.	Figure S4	Mass spectrum of FLH .	8
5.	Figure S5	¹ H NMR spectrum of FLH + HPO ₄ ²⁻ Complex (in DMSO– d_6).	9
6.	Figure S6	¹³ C NMR spectrum of FLH + HPO ₄ ²⁻ Complex (in DMSO– d_6).	10
7.	Figure S7	IR spectrum of \mathbf{FLH} + $\mathrm{HPO_4}^2$ Complex.	
8.	Figure S8	Mass spectrum of FLH + HPO ₄ ²⁻ Complex.	12
9.	Figure S9	UV-visible spectra of FLH with different anions at 10μ M in EtOH: water (3: 2, v/v) medium.	
10.	Figure S10	Bar graph representation of Absorption spectrum for competition study; [yellow bars] showing response FLH in presence of various anions, [blue bars] showing response of FLH in presence of HPO_4^{2-} and HPO_4^{2-} followed by various competing anions.	
11.	Figure S11	Naked-eye images of FLH in the presence of HPO_4^{2-} and various anions (under visible light).	15
12.	Figure S12	Naked eye fluorescence images of FLH (1.0 μ M) in the presence of HPO ₄ ²⁻ and various anions (10 equiv.).	16
13.	Figure S13	Fluorescence spectra of receptor FLH (1.0 μ M) upon addition of different anions.	17
14.	Figure S14	Bar graph representation of Emission spectrum for competition18study; [green bars] showing response FLH in presence of various anions, [red bars] showing response of FLH in presence of HPO_4^{2-} and HPO_4^{2-} followed by various competing anions.	
15.	Figure S15	Calibration curve for determination of detection limit of FLH for HPO_4^{2} by using absorption titration data (494 nm).	19
16.	Figure S16	Calibration curve for determination of detection limit of FLH for HPO_4^{2} by using emission titration data (526 nm).	20
17.	Figure S17	Fluorescence spectra of receptor FLH (1.0µM) upon addition of different anions and corresponding fluorescence images	21
18.	Figure S18	Reaction time profile of FLH with HPO ₄ ^{2–} by (a) Through UV- visible spectra (λ_{abs} at 495 nm) and (b) Fluorescence spectra λ_{em} at 530 nm.	22
19.	Figure S19	The variation in fluorescence intensity in FLH with the change in pH in the presence of HPO_4^{2-}	23
20.	Table S1	Crystal data of FLHP .	24

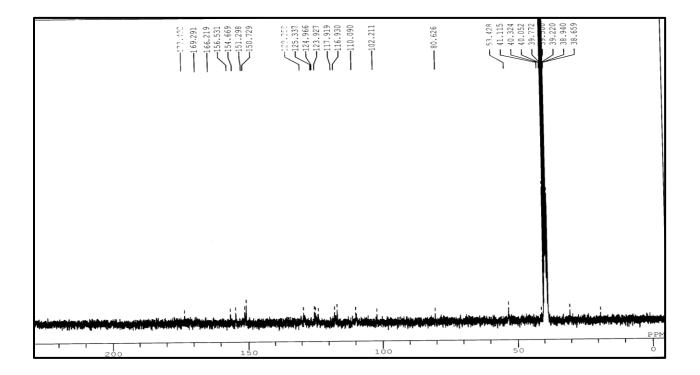


Figure S3: IR spectrum of FLH:

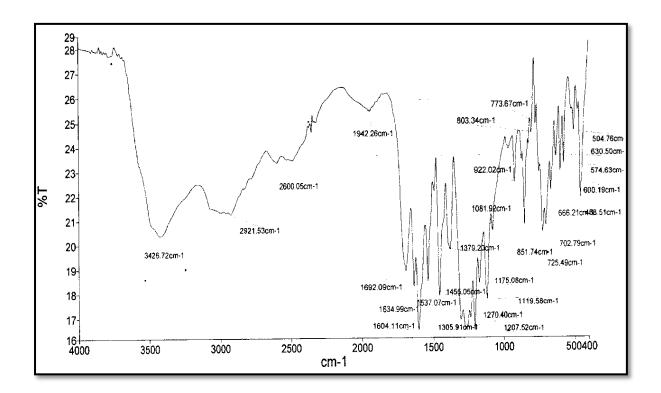
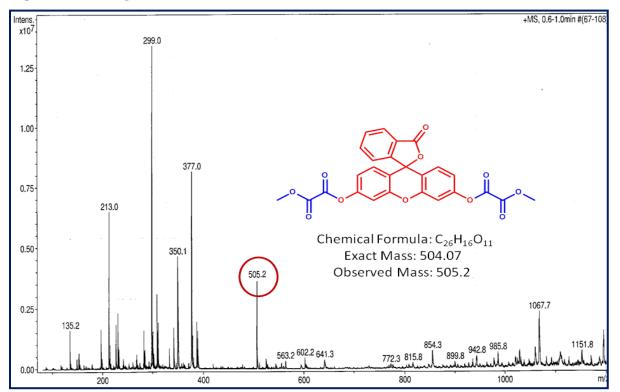
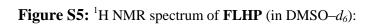
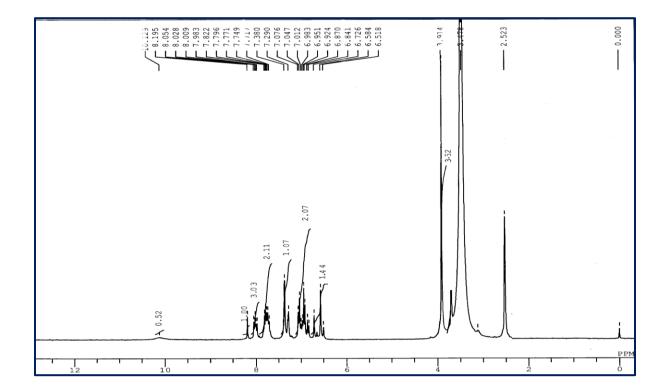
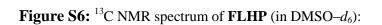






Figure S4: Mass spectrum of FLH:

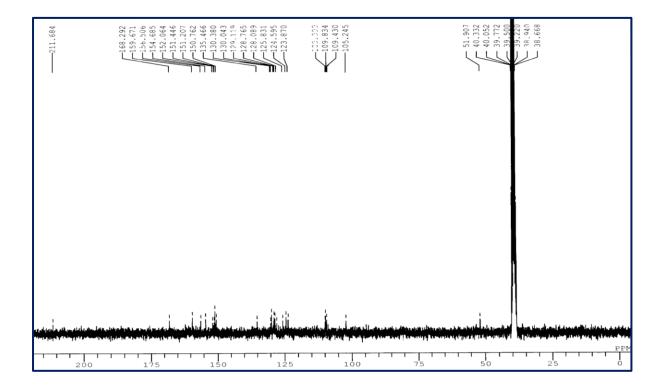
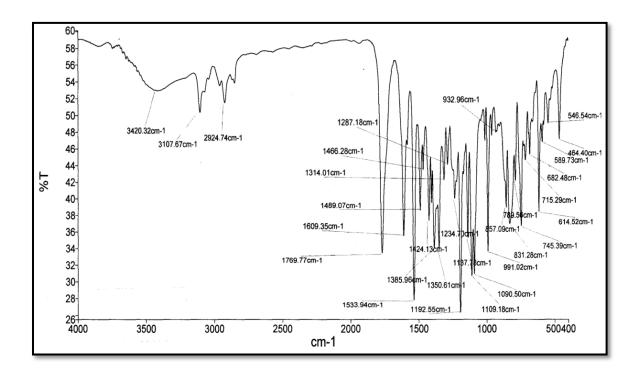
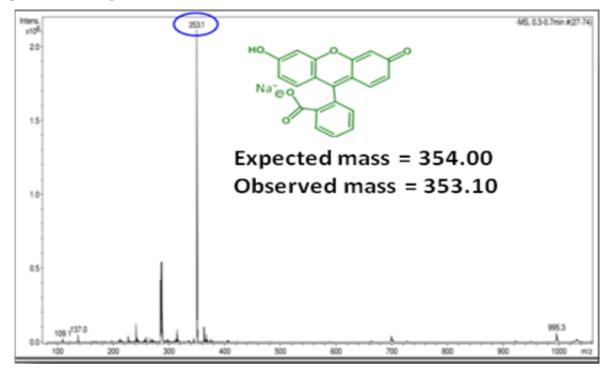
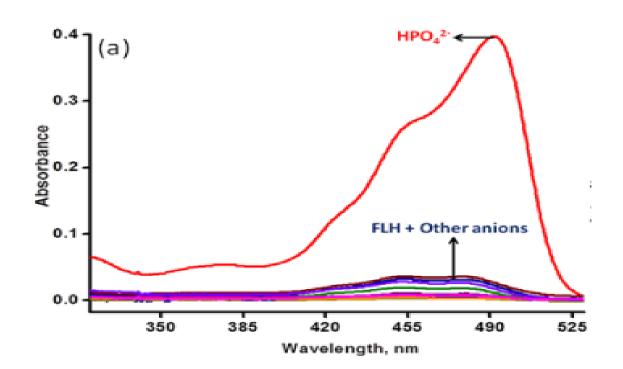


Figure S7: IR spectrum of FLHP:

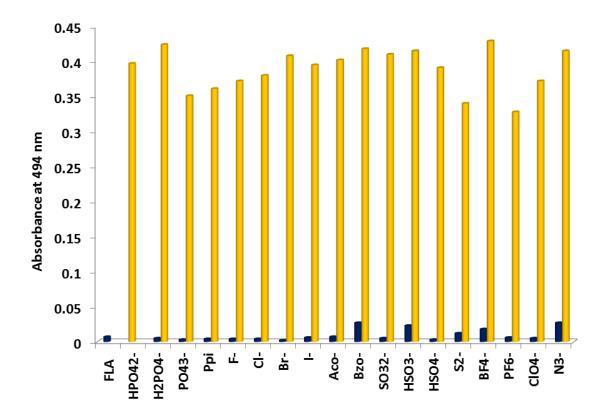
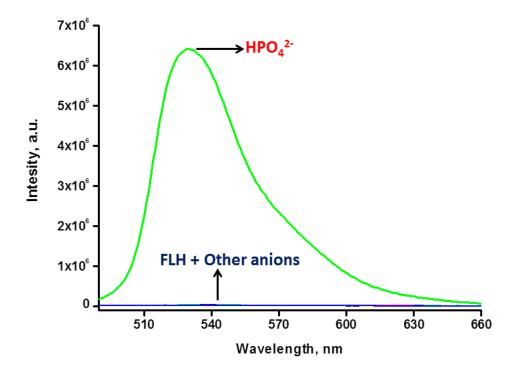
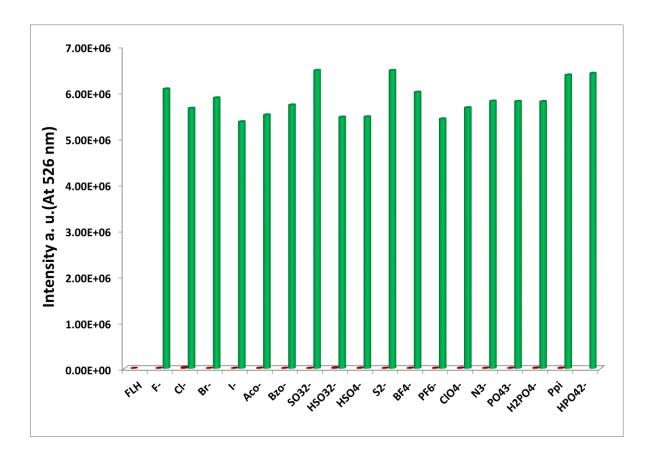

Figure S8: Mass spectrum of FLHP:

Figure S9: UV-visible spectra of **FLH** with different anions at 10 μ M in EtOH: water (3: 2, v/v) medium:

Figure S10: Bar graph representation of Absorption spectrum for competition study; **[yellow bars]** showing response **FLH** in presence of various anions, **[blue bars]** showing response of **FLH** in presence of HPO_4^{2-} and HPO_4^{2-} followed by various competing anions:


Figure S11: Naked-eye images of **FLH** in the presence of HPO_4^{2-} and various anions (under visible light):


Figure S12: Naked eye fluorescence images of **FLH** (1.0μ M) in the presence of HPO₄²⁻ and various anions (10 equiv.):

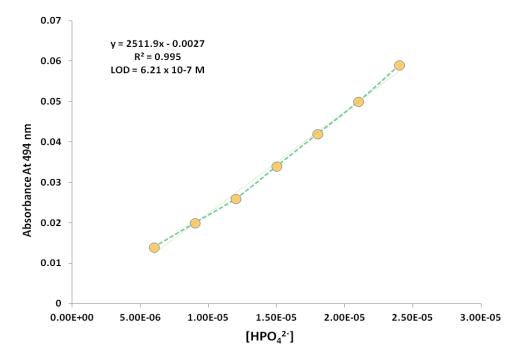
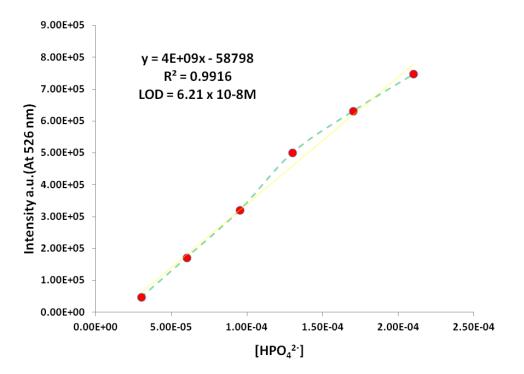
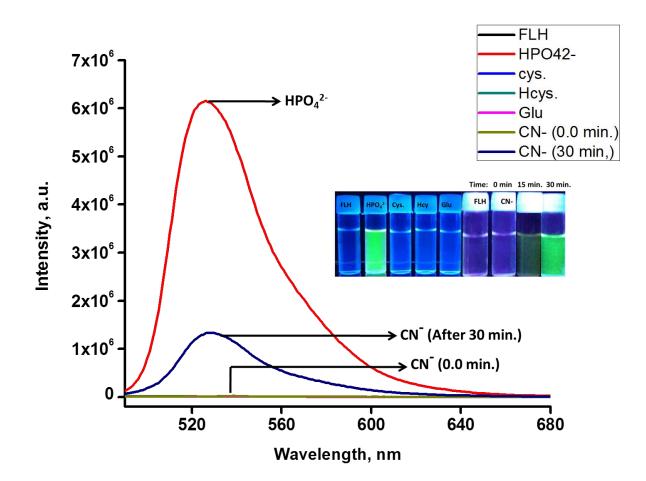
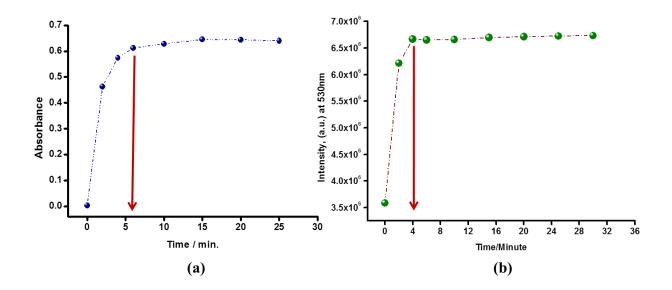

Figure S13: Fluorescence spectra of receptor **FLH** (1.0µM) upon addition of different anions:

Figure S14: Bar graph representation of emission spectrum for competition study; [green bars] showing response **FLH** in presence of various anions, [red bars] showing response of **FLH** in presence of HPO_4^{2-} and HPO_4^{2-} followed by various competing anions:

Figure S15: Calibration curve for determination of detection limit of **FLH** for HPO_4^{2-} by using absorption titration data (494 nm):

Figure S16: Calibration curve for determination of detection limit of **FLH** for HPO_4^{2-} by using emission titration data (526 nm):

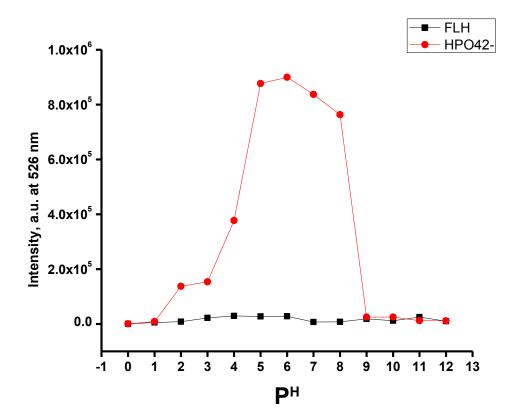

Figure S17:Fluorescence spectra of receptor FLH $(1.0\mu M)$ upon addition different anions and corresponding fluorescence images

Figure S18:Reaction time profile of **FLH** with HPO_4^{2-} by (a) Through UV-visible spectra (λ_{abs} at 495 nm) and (b) Fluorescence spectra λ_{em} at 530 nm.

Figure S19: The variation in fluorescence intensity in **FLH** with the change in pH in the presence of HPO_4^{2-} :

TABLE S1: Crystal data of FLHP

Identification code	FLHP
CCDC number	994988
Empirical formula	$C_{20}H_{14}O_{6}$
Formula weight	350.31
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system, space group	Triclinic, P -1
	a = 8.1166(11) A alpha = 70.890(10) deg.
Unit cell dimensions	b = 9.7387(12) A beta = $69.248(11) deg$.
	c = 11.3513(12) A gamma = 77.970(11) deg.
Volume	788.47(17)A ³
Absorption coefficient	0.110 mm ⁻¹
F(000)	364.0
Crystal size	0.24 x 0.20 x 0.18 mm
Theta range for data collection	3.31 to 29.02 deg.
Limiting indices	-10<=h<=9, -11<=k<=12, -12<=l<=14
Reflections collected / unique	6075 / 3557 [R(int) = 0.0390]
Completeness to theta $= 25.00$	99.8 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3557 / 0 / 240
Goodness-of-fit on F^2	1.007
Final R indices [I>2sigma(I)]	R1 = 0.0723, wR2 = 0.1541
R indices (all data)	R1 = 0.1596, wR2 = 0.2106
Largest diff. peak and hole	0.277 and -0.285 e.A ⁻³