Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

## Supplementary Information

## Photochemical reactivity of phenyl (methyl-tetrazolyl) ketone- Hydrogen atom transfer vs electron transfer

Maxime Fréneau<sup>1,2</sup>, Corentin Lefebvre<sup>2</sup>, Mario Andrés Gomez Fernandez<sup>2</sup>, Claire Richard<sup>1\*</sup>, Norbert Hoffmann<sup>2\*</sup>

<sup>1</sup> Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France

<sup>2</sup> CNRS, CNRS, Université de Reims Champagne-Ardenne, ICMR, Equipe de Photochimie, UFR Sciences, B.P. 1039, 51687 Reims, France

Table SI-1: Spectral characteristics of 1 in the different solvents

| Solvent     | λ <sub>max</sub> /nm | ε/M <sup>-1</sup> cm <sup>-1</sup> |
|-------------|----------------------|------------------------------------|
|             | 265                  | 12000                              |
| IVIECN      | 265                  | 13800                              |
| cyclohexane | 268                  | 15640                              |
| n-heptane   | 268                  | 15160                              |
| i-PrOH      | 268                  | 13500                              |



Figure SI-1: UV spectrum of 1 at 7.3×10<sup>-5</sup> M in MeCN. Inset: UV spectrum of 1 at 9.5×10<sup>-4</sup> M in MeCN



Figure SI-2: <sup>1</sup>H and <sup>13</sup>C-NMR spectra of photoproduct 2 and UHPLC-MS (ESI positive mode) spectrum













Figure SI-4: <sup>1</sup>H and <sup>13</sup>C-NMR spectra of photoproduct 4 and UHPLC-MS (ESI positive mode) spectrum



1\_ cyclohexane #653 RT: 5.13 AV: 1 NL: 7.88E7 T: FTMS + p ESI Full ms [50.0000-750.0000] 273.1703



## Irradiation of compound 1 in deuterated cyclohexane $C_6D_{12}$ .

In a NMR quartz tube is dissolved 10.0 mg of compound **1** in 0.75 mL of deuterated cyclohexane ( $C_6D_{12}$ ). The reaction mixture is bubbled with argon during 5 min. Irradiation at 300 nm is carried out during 15 min. 1H NMR is then performed. The conversion was 15% (Scheme S-1).

**Scheme S-1**: Reaction of compound **1** in  $C_6D_{12}$ , 1H-NMR spectrum of the reaction mixture.



**Figure SI-5**: Transient absorption spectrum of  ${}^{3}1^{*}$  measured in MeCN, n-heptane, cyclohexane and iPrOH. A<sub>266</sub> around 0.8.



**Figure SI-6:** Formation of the triplet of anthracene at 420 nm after excitation of anthracene alone (curve 1) and after excitation of anthracene in the presence of **1** at 266 nm in argon-saturated MeCN. A part of the anthracene triplets are formed immediately after the pulse by direct excitation, and the other part is formed in 0.7 Is by energy transfer from <sup>3</sup>1<sup>\*</sup> to ground state anthracene. At the concentration of 1.5×10<sup>-4</sup> M, anthracene trapped about 60% of <sup>3</sup>1<sup>\*</sup>. (R. Bensasson and E. J. Land, Triplet-Triplet Extinction Coefficients via Energy Transfer, *Trans. Faraday Soc.* 1971, **67**, 1904-1915. G. Grabner, G. Koehler, G. Marconi, S. Monti and E. Venuti, Photophysical properties of methylated phenols in non-polar solvents, *J. Phys. Chem.* 1990, **94**, 3609-3613.)



**Figure SI-7:** Effect of i-PrOH on the decay of <sup>3</sup>1<sup>\*</sup> in air-saturated MeCN. Plot of the apparent firstorder decay rate constant against i-PrOH concentration. The other experimental conditions are the same as those given in Figure 1.



**Figure SI-8:** Influence of **1** concentration on the decay of  ${}^{3}\mathbf{1}^{*}$ . Excitation in MeCN at 355 nm. Argon – saturated medium. Detection at 550 nm.



**Figure SI-9 :** Monitoring of the transient absorbance at 480 nm after excitation of **1** in deoxygenated cyclohexane. Following the fast decay of  ${}^{3}\mathbf{1}^{*}$  a long-life secondary transient is observed.



**Figure SI-10:** Plot of 1/A vs time, where A is the transient absorbance measured at 330 nm in i-PrOH. The linearity of the plot shows that the transient disappears by a bimolecular recombination.



**Figure SI-11:** Absorbance decay of the secondary transient formed in cyclohexane at 330 nm. Experimental data and fitting postulating a mixture of first order decay and second order decay. The red line corresponds to the sum of first order (weight of 80%) with a rate constant of  $2.5 \times 10^5$  s<sup>-1</sup> and second order (weight of 20%) with  $2k/\epsilon=6.5\times 10^5$  cm<sup>-1</sup>s<sup>-1</sup>



**Figure SI-12:** Effect of oxygen on the formation and the decay of the secondary transient formed in MeCN at 460 nm, (a) deoxygenated medium, (b) air-saturated medium, (c) oxygen-saturated medium.

