Environmentally Friendly Covalent Coupling of Proteins onto Oxidized Cellulosic Materials

Oskar Haske-Cornelius,^a Simone Weinberger,^a Felice Quartinello,^a Claudia Tallian,^a Florian Brunner,^a Alessandro Pellis,^{a, b,*} and Georg M. Guebitz,^{a,c}

¹ Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria

² Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, YO10 5DD, York, UK

³ Austrian Centre of Industrial Biotechnology, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria

* Corresponding author: email: alessandro.pellis@gmail.com, alessandro.pellis@boku.ac.at

Figure S1. Coupling of hydrophobins to oxidized and non-oxidized Whatman No.1 filter paper sheets. Oxidized samples (Paper sheet + TEMPO/NaClO2 + NaClO) show a higher soaking time than samples which were coupled with hydrophobins but not oxidized before (blanks). All experiments were conducted in triplicates and are presented showing the standard deviation.