Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Electronic Supplementary Material (ESI) for

A label-free "turn-on" fluorescence platform of glucose based on

AuNCs@MnO₂ nanocomposites

Shimeng Liu, Ran Liu, Guiying Yang, Shiya Li, Changyin Lv*, Li

Zuo,Panpan Xue

University of South China, Hengyang 421001, College of Public Health,

Hunan, China.

*E-mail:<u>Lchy1955@163.com</u>

Fig. S1 Optimization of synthesis conditions of bromelain gold nanoclusters:(a)Selection of NaOH solution dosage;(b)Selection of concentration of bromelain solution;(c)Effect of concentration of chloroauric acid solution;(d)Effects of different reagents on the fluorescence intensity of the system: NaOH, NaBH₄, ascorbic acid (AA), citric acid;(e)Selection of different reaction temperatures;(f)Fluorescence intensity changes under different reaction times.The experimental conditions of the final system : $C_{NaOH}=45\mu L(1 \text{ mol/L})$; $C_{Bromelain}=25 \text{mg/mL,pH}=9.0$); $C_{Chloroauric acid}=10 \text{mmol/L}$;Temperature=37°C;Time=12h.

Fig.S2 Fluorescence stability of Bromelain-AuNCs in five months. AuNCs were stored in 4°C in dark.

Fig. S3 The EDX pattern of synthesized of AuNCs

MnO ₂	•	٨	CF=	T=298K,	T=303K,	T=310K	T=298K,	T=303K,	T=310K,
(10 ⁻⁴ mg/mL)	Aex390	Aem680	F_{corr}/F_{obsd}	F_{obsd}	F_{obsd}	, F_{obsd}	F_{corr}	F _{corr}	\mathbf{F}_{corr}
0	0.014	0.003	1.02	10009.04	9066.23	8806.08	10180.00	9221.09	8956.50
0.1	0.041	0.012	1.06	9397.785	8736.88	8346.43	9949.21	9249.52	8836.16
0.25	0.068	0.027	1.11	8931.41	8456.665	7822.24	9900.34	9374.09	8670.84
0.4	0.091	0.034	1.15	8021.175	8069.285	7340.335	9188.97	9244.09	8409.01
0.5	0.102	0.041	1.17	7808.595	7627.25	7140.175	9121.11	8909.29	8340.34
0.75	0.212	0.123	1.43	6294.08	6312.3	5893.08	9015.47	9041.57	8441.09
1	0.298	0.162	1.63	4701.065	5028.31	4389.295	7666.70	8200.39	7158.25

Table 1 summarizes the concentrations of MnO_2 nanosheets and the absorbance and fluorescence intensity of AuNCs after the addition of MnO_2 nanosheets. Correction factors (CFs) for the IFE at different concentrations of MnO_2 nanosheets were also calculated.

Fig.S4 (a): Suppressed efficiency (E%) of observed (black curve) and corrected (red curve) measurements for AuNCs after each addition of different concentrations of MnO_2 nanosheets; (b): The UV–vis absorption spectrum of MnO_2 nanosheets (black curve), AuNCs (red curve), AuNCs+ MnO_2 (blue curve).

Т	$K_{sv} (mL \cdot g^{-1})$	$K_q(mL \cdot (g \cdot s)^{-1})$	$k(mL \cdot g^{-1})$	R(stern-Volmer)
298K	3.89 ×10 ⁵	3.89×10^{13}	3.89×10 ⁵	0.9973
303K	3.57×10 ⁵	3.57×10 ¹³	3.57×10 ⁵	0.9977
310K	1.81 ×10 ⁵	1.81×10^{13}	1.81×10 ⁵	0.9944

Table 2: Interaction constants of MnO₂ and AuNCs at different temperatures

Fig.S5 (a)the formation time of AuNCs@ MnO_2 nanocomposite;(b)the temperature selection of AuNCs@ MnO_2 nanocomposite

Fig.S6 The selection of in the AuNCs@ MnO_2 -H₂O₂ system (a) pH;(b)different butters;(c)Volume of MES buffer.

Fig. S7 The Effect of in the AuNCs@ MnO_2 - H_2O_2 system (a)Volume of AuNCs;(b)the incubation time with H_2O_2 ;(c)the temperature

Fig.S8 Fluorescence emission spectra of AuNCs(blue line);AuNCs@MnO₂ (black line) ;AuNCs@MnO₂+600nM H₂O₂;AuNCs@MnO₂+20mM Glucose.

Fig.S9 The selection of in the AuNCs@ MnO_2 -glucose system (a) pH;(b)different butters;(c)Volume of MES buffer.

Fig.S10 The Effect of in the AuNCs@MnO₂-glucose system:
(a) Volume of AuNCs;(b)ncubation time of GO_x enzyme;
(b) the incubation time;(c) the incubation time with glucose;(d) the temperature

Methods	System	Detection limits
Fluorescence[1]	H ₂ -TEHPPS	13µM
Colorimetric[2]	Modified NiO nanoparticles	8μΜ
Colorimetric[3]	Cu-SBA-15	3.7µM
Colorimetric[4]	V ₂ O ₅ nanozymes	1µM
Colorimetric[5]	Ag nanoparticles	200nM
Colorimetric[6]	PtCNPs-TMB	150nM
Colorimetric[7]	GQDs/AgNPs	30nM
Electrochemical[8]	FePc-CP NSs film modified electrode	17nM
Fluorescence (This work)	AuNCs@MnO2 nanocomposite	5.7nM

Table 3. Comparison of the proposed H_2O_2 detection method with different reporting methods.

Table 4. Comparison of the proposed glucose detection method wi	ith different reporting methods.
---	----------------------------------

Methods	System	Detection limits
Microfluidic[9]	microfluidic paper-based analysis devices (µPADs)	21.3mM
Colorimetric[10]	Au nanorods@Pt nanodots core/shell nanostructures	450μΜ
Surface-enhanced Raman Spectroscopy [11]	MBA-Ag@AuNPs-GO	330µM
Fluorescence[12]	Modified CdTe/ZnTe/ZnS Quantum Dots	300µM
Colorimetric[2]	Modified NiO nanoparticles	200µM
Surface Plasmon Resonance Spectroscopy. [13]	Molecular imprinting/ Hydrogel /Au NPs	111.1µM
Electrochemical[14]	Pt/Au/BDD electrode	77µM
Fluorescence[15]	polyethyleneimine (PEI)-capped copper nanoclusters	8μΜ
Fluorescence (This work)	AuNCs@MnO2 nanocomposite	6.7µM

Methods	System	Linear range
Fluorescence [16]	UCNP-MnO ₂	0–400 µM
Fluorescence[17]	phenol formaldehyde resin (PFR)-MnO ₂	5 µM - 1 mM
Fluorescence[18]	CuNCs-MnO ₂	1 μM - 200 μM
Fluorescence (This work)	AuNCs@MnO2 nanocomposite	25µM-30mM

Table 5. Comparison of the proposed glucose detection method with different reporting methods.

References

- [1] Y F. Huan, Q Fei, H Y Shan, B J Wang,H Xu and G D Feng.A novel water-soluble sulfonated porphyrin fluorescence sensor for sensitive assays of H₂O₂ and glucose[J].Analyst,2015,140, 1655-1661.
- [2] Qingyun Liu, Yanting Yang, Hui Li, Renren Zhu, Qian Shao, Shanguang Yang, Jingjing Xu.NiO nanoparticles modified with 5,10,15,20-tetrakis(4-carboxyl pheyl)-porphyrin: Promising peroxidase mimetics for H₂O₂ and glucose detection[J].Biosensors and Bioelectronics,2015, 64 :147-153.
- [3] Jianshuai Mu, Yun He, Yan Wang.Copper-incorporated SBA-15 with peroxidase-like activity and its application for colorimetric detection of glucose in human serum[J]. Talanta, 2016,148:22-28.
- [4] Jiaheng Sun, Chunyan Li, Yanfei Qi, Shuanli Guo and Xue Liang.Optimizing Colorimetric Assay Based on V₂O₅ Nanozymes for Sensitive Detection of H₂O₂ and Glucose[J].Sensors,2016, 16(4): 584-594.
- [5] Yu Zhang, Yan-Jun Zhang, Xiao-Dong Xia, Xiao-Qi Hou, Cheng-Ting Feng, Jian-Xiu Wang,Liu Deng.A quantitative colorimetric assay of H₂O₂ and glucose using silver nanoparticles induced by H₂O₂ and UV[J].Chinese Chemical Letters,2013,24(12):1053-1058.
- [6] Yan-Wen Bao,Xian-Wu Hua,Huan-Huan Ran, Jia Zeng and Fu-Gen Wu.Metal-doped carbon nanoparticles with intrinsic peroxidase-like activity for colorimetric detection of H₂O₂ and glucose[J].Journal of Materials Chemistry B,2019,7, 296-304.
- [7] Shuai Chen, Xin Hai, Xu-Wei Chen and Jian-Hua Wang.In Situ Growth of Silver Nanoparticles on Graphene Quantum Dots for Ultrasensitive Colorimetric Detection of H₂O₂ and Glucose[J].Analytical chemistry,2014 ,86 (13) :6689-6694.

- [8] Wenping Liu, Houhe Pan, Chenxi Liu, chaorui su, Wenbo Liu, Kang Wang, and Jianzhuang Jiang.An Ultrathin Phthalocyanine Conjugated Polymer Nanosheets-based Electrochemical Platform for Accurately Detecting H₂O₂ in Real Time[J].ACS Appl Mater Interfaces.,2019, 11(12):11466-11473.
- [9] Xi Chen, Jin Chen, Fubin Wang, Xia Xiang, Ming Luo, Xinghu Ji, Zhike He.Determination of glucose and uric acid with bienzyme colorimetry on microfluidic paper-based analysis devices[J].Biosensors and Bioelectronics,2012,35:363-368.
- [10] Jianbo Liu, Xiaona Hu, Shuai Hou, Tao Wen, Wenqi Liu, Xing Zhu, Jun-Jie Yin, Xiaochun Wu.Au@Pt core/shell nanorods with peroxidase and ascorbate oxidase-like activities for improved detection of glucose[J].Sensors and Actuators B: Chemical, 2012, 166:708-714.
- [11] Vinod Kumar Gupta, Necip Atar , Mehmet Lütfi Yola, Merve Eryılmaz, Hilal Torul, Ug`ur Tamer f, Ismail Hakkı Boyacı, Zafer Üstündag.A novel glucose biosensor platform based on Ag@AuNPs modified graphene oxide nanocomposite and SERS application[J].Journal of Colloid and Interface Science,2013,416: 231-237.
- [12] Weitai Wu, Ting Zhou, Alexandra Berliner, Probal Banerjee, and Shuiqin Zhou.Glucose-Mediated Assembly of Phenylboronic Acid Modified CdTe/ZnTe/ZnS Quantum Dots for Intracellular Glucose Probing[J].Angewandte Chemie International Edition,2010, 49(37): 6554-6558.
- [13] J. Wang, S. Banerji, N. Menegazzo, W. Peng, Q. Zou, K.S. Booksh. Glucose detection with surface plasmon resonance spectroscopy and molecularly imprinted hydrogel coatings[J]. Talanta,2011,86:133-141.
- [14] Siriwan Nantaphol, Takeshi Watanabe, Naohiro Nomura, Weena Siangproh, Orawon Chailapakul , Yasuaki Einaga. Bimetallic Pt - Au nanocatalysts electrochemically deposited on boron-doped diamond electrodes for nonenzymatic glucose detection [J]. Biosensors and Bioelectronics, 2017, 98:76-82.
- [15] Yu Ling, Na Zhang, Fei Qu, Ting Wen, Zhong Feng Gao, Nian Bing Li, Hong Qun Luo.Fluorescent detection of hydrogen peroxide and glucose with polyethyleneimine-templated Cu nanoclusters[J].Spectrochim Acta A Mol Biomol Spectrosc, 2014,118:315–320.
- [16] Jing Yuan, Yao Cen, Xiang-Juan Kong, Shuang Wu, Chen-Liwei Liu, Ru-Qin Yu, and Xia Chu.MnO₂-Nanosheet-Modified Upconversion Nanosystem for Sensitive Turn-On Fluorescence Detection of H₂O₂ and Glucose in Blood[J].ACS Appl Mater Interfaces,2015, 7, 10548-10555.
- [17] Zhong Feng Gao , Asmerom Yohannes Ogbe, Ei Ei Sann , Xudong Wang, Fan Xia.Turn-on

fluorescent sensor for the detection of glucose using manganese dioxide-phenol formaldehyde resin nanocomposite[J].Talanta,Talanta, 2017, 180:12-17.

[18] Hai-Bo Wang , Ying Chen,Na Li , Yan-Ming Liu.A fluorescent glucose bioassay based on the hydrogen peroxide-induced decomposition of a quencher system composed of MnO₂ nanosheets and copper nanoclusters[J].184(2):515-523.