Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

SUPPORTING INFORMATION

Step by step designing of sensitive luminescent nanothermometers based on Cr³⁺,Nd³⁺ co-doped La_{3-x} Lu_xAl_{5-y}Ga_yO₁₂ nanocrystals

K. Elzbieciak-Piecka¹, C. Matuszewska¹ L. Marciniak^{1*}

¹ Institute of Low Temperatures and Structure Research PAS

<u>*e-mail l.marciniak@intibs.pl</u>

Figure S.1. XRD patterns for La₂LuGa₅O₁₂: Cr³⁺ with different concentrations of Cr³⁺ dopant.

Figure S.2. XRD patterns for $La_2LuGa_5O_{12}$: Cr^{3+} , 1%Nd³⁺ with different concentrations of Cr^{3+} dopant.

Figure S.3. Cr³⁺-O²⁻ ionic distances in La_{3-x}Lu_xGa₅O₁₂: 1%Cr³⁺.

Figure S.4. Comparison of $La_{3-x}Lu_xGa_5O_{12}$: 1%Cr³⁺ emission spectra in the function of temperature: $La_3Ga_5O_{12}$ -a); $La_2LuGa_5O_{12}$ -b); $LaLu_2Ga_5O_{12}$ -c); $Lu_3Ga_5O_{12}$ -d).

Figure S.5. Integral intensity of ${}^{2}E \rightarrow {}^{4}A_{2}$ -a) and ${}^{4}T_{2} \rightarrow {}^{4}A_{2}$ -b) electronic transitions in the function of temperature for La_{3-x}Lu_xGa₅O₁₂: 1%Cr³⁺.

Figure S.6. Comparison of La₂LuAl_{5-y}Ga_yO₁₂: 1%Cr³⁺ emission spectra in the function of temperature: La₂LuAl₅O₁₂ -a); La₂LuAl₄GaO₁₂ -b); La₂LuAl₃Ga₂O₁₂ -c); La₂LuAl₂Ga₃O₁₂ -d); La₂LuAlGa₄O₁₂ -e); La₂LuGa₅O₁₂ -f).

Figure S.7. Comparison of La₂LuGa₅O₁₂: %Cr³⁺ emission spectra in the function of temperature with different concentration of Cr³⁺ dopant: 0.1%Cr³⁺ –a); 0.5%Cr³⁺ –b); 1%Cr³⁺ –c); 2%Cr³⁺ –d) 5%Cr³⁺ – e); 10%Cr³⁺ –f).

Figure S.8. Integral intensity of ${}^{2}E \rightarrow {}^{4}A_{2}$ -a) and ${}^{4}T_{2} \rightarrow {}^{4}A_{2}$ -b) electronic transitions for different Cr³⁺ concentrations in the function of temperature for La₂LuGa₅O₁₂:%Cr³⁺.

Figure S.9. Comparison of La₂LuGa₅O₁₂: %Cr³⁺ emission spectra with different concentration of Cr³⁺ dopant, measured at -150°C –a); evolution of ${}^{4}T_{2} \rightarrow {}^{4}A_{2}/{}^{2}E \rightarrow {}^{4}A_{2}$ luminescence intensity ratio (LIR) –b) with the corresponding sensitivities –c) in the function of temperature.

Figure S.10. Comparison of La₂LuGa₅O₁₂: %Cr³⁺,1%Nd³⁺ excitation spectra with different concentration of Cr³⁺ dopant, obtained in temperature 77K.

Figure S.11. Comparison of La₂LuGa₅O₁₂: %Cr³⁺,1%Nd³⁺ emission spectra in the function of temperature with different concentration of Cr³⁺ dopant: 0.1%Cr³⁺,1%Nd³⁺ -a); 0.5%Cr³⁺,1%Nd³⁺ -b); 2%Cr³⁺,1%Nd³⁺ -c); 5%Cr³⁺,1%Nd³⁺ -d); 10%Cr³⁺,1%Nd³⁺ -e) for 450nm excitation line.

Figure S.12. Comparison of La₂LuGa₅O₁₂: %Cr³⁺,1%Nd³⁺ emission spectra in the function of temperature with different concentration of Cr³⁺ dopant: 0.1%Cr³⁺,1%Nd³⁺ -a); 0.5%Cr³⁺,1%Nd³⁺ -b); 2%Cr³⁺,1%Nd³⁺ -c); 5%Cr³⁺,1%Nd³⁺ -d); 10%Cr³⁺,1%Nd³⁺ -e) for 532 excitation line.

Figure S.13. Integral intensity of ${}^{2}E \rightarrow {}^{4}A_{2}$ -a), ${}^{4}T_{2} \rightarrow {}^{4}A_{2}$ -b) ${}^{4}F_{5/2} \rightarrow {}^{4}I_{9/2}$ -c), ${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2}$ -d) electronic transitions for different Cr³⁺ concentrations in the function of temperature for La₂LuGa₅O₁₂:%Cr³⁺, 1%Nd³⁺ (532nm excitation line).

Figure S.14. Integral intensity of ${}^{2}E \rightarrow {}^{4}A_{2}$ -a), ${}^{4}T_{2} \rightarrow {}^{4}A_{2}$ -b) ${}^{4}F_{5/2} \rightarrow {}^{4}I_{9/2}$ -c), ${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2}$ -d) electronic transitions for different Cr³⁺ concentrations in the function of temperature for La₂LuGa₅O₁₂:%Cr³⁺, 1%Nd³⁺ (450nm excitation line).

Figure S.15. Comparison of LIR₁-LIR₄ evolution with the corresponding relative sensitivities (S₁-S₄) in the function of temperature –a-d) for La₂LuGa₅O₁₂:%Cr³⁺, 1%Nd³⁺ (532nm excitation line).

Figure S.16. Comparison of LIR₁-LIR₄ evolution with the corresponding relative sensitivities (S₁-S₄) in the function of temperature –a-d) for La₂LuGa₅O₁₂:%Cr³⁺, 1%Nd³⁺ (450nm excitation line).

Figure S.17. Comparison of emission spectra evolution in the function of Cr³⁺ concentration for La₂LuGa₅O₁₂:%Cr³⁺, 1%Nd³⁺, obtained by 450 nm excitation line –a); evolution of LIR₂–b) with the corresponding relative sensitivities (S₂) –c) in the function of temperature.

Figure S.18. Integral intensity of ${}^{4}T_{2} \rightarrow {}^{4}A_{2}$ -a) and ${}^{4}F_{5/2} \rightarrow {}^{4}I_{9/2}$ -b) electronic transitions for different Nd³⁺ concentrations in the function of temperature for La₂LuGa₅O₁₂:0.5%Cr³⁺, x%Nd³⁺(532nm excitation line).

Figure S.19. Comparison of La₂LuGa₅O₁₂: %Cr³⁺ emission spectra measured for the same experimental conditions –a) and integral emission intensity –b) in the function of Cr³⁺ concentration. Comparison of La₂LuGa₅O₁₂: %Cr³⁺,1%Nd³⁺ emission spectra –c) and integral emission intensity –d) in the function of Cr³⁺ concentration. Comparison of La₂LuGa₅O₁₂: 1%Cr³⁺,x%Nd³⁺ emission spectra –e) and integral emission intensity –f) in the function of Nd³⁺ concentration. (All presented emission spectra were obtained at room temperature with the use of 445nm excitation line.)

Figure S.20 The reproducibility of temperature readout using La₂LuGa₅O₁₂:1%Cr³⁺, 5%Nd³⁺ nanocrystals verified within the framework of 12 heating-cooling cycles