Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

Supporting information

For

Novel Yellow Thermally Activated Delayed Fluorescence Emitters for Highly Efficient Full-TADF WOLEDs with Low Driving Voltages and Remarkable Color Stability

Tingting Huang, Di Liu,* Deli Li, Wenfeng Jiang, Jingyang Jiang

State Key Laboratory of Fine Chemicals, College of Chemistry, Dalian University of

Technology, 2 Linggong Road, Dalian, 116024, China. E-mail: liudi@dlut.edu.cn

Supplementary Figures

Fig. S1. TGA thermograms of TFM-QP and CN-QP recorded under nitrogen at a heating rate of 10 °C min⁻¹.

Fig. S2. Absorption (a) and PL (b) spectra of fragments and TADF compounds in dilute toluene solutions at RT, and LT-PL spectra of TFM-QP (c) and CN-QP (d) in frozen 2-methyl-tetrahydrofuran matrix at 77 K.

Fig. S3. Transient PL decay curves of 5wt% TFM-QP and CN-QP doped CBP films at room temperature. The short-time-range decay curves (a, c) were measured using TCSPC technique, while the long-time-range decay curves (b, d) were measured using MCS technique.

compoundsTemperature $\tau_1(ns)$ A_1 $\tau_2(us)$ A_2 $\tau_3(us)$ 200K16862.24.027.224.1	A ₃ 9.63
200V 169 62 2 4 0 27 2 24 1	9.63
$300\mathbf{K}$ 108 03.2 4.9 27.2 24.1	
250K 149 67.3 5.6 21.4 35.2	11.3
TFM-QP 200K 148 69.7 6.9 17.3 52.1	12.8
150K 154 73.4 7.5 13.8 63.9	12.8
100K 144 78.8 7.8 11.1 84.2	10.1
300K 255 79.9 7.9 20.1 -	-
250K 157 73.3 3.8 18.9 18.9	7.8
CN-QP 200K 183 76.2 5.0 16.3 28.4	7.5
150K 154 77.4 5.49 14.0 37.1	8.6
100K 155 79.7 5.2 11.8 46.2	8.6

Table S1. The fitted data of TFM-QP and CN-QP films doped in CBP.

Fig. S4. PL spectra of TFM-QP (a) and CN-QP (b) in THF/water mixtures.

Fig. S5 Energy level diagram for the monochromic and WOLEDs and the chemical structures of related materials used in all OLEDs in present study.

Fig. S6. Current density-voltage-brightness (*J-V-B*) characteristics, EL spectra, and the efficiency curves for CN-QP based monochromic devices at various doping concentrations.

Fig. S7. *J-V-B* characteristics (a), EL spectra (b), and efficiency curves (c,d) of the monochromatic OLEDs with non-doped TFM-QP and CN-QP emitting layers.

Fig. S8. The power efficiency curves for the doped WOLEDs with TFM-QP or CN-QP as the orange TADF emitters.

Fig. S9. *J-V-B* characteristics (a), efficiency curves (b and c), and EL spectra for the non-doped WOLED W3 containing TFM-QP as yellow TADF emitter.

NMR and Mass spectra of New Compounds

