Supporting Information

Formation of CoNi₂S₄ nanofibers with 3D hierarchical pompom-like structure

for high-rate electrochemical capacitors

Jingjing Yuan,^{a,b} Dachuan Yao,^a Xiaoke Zheng,^a Jianxing Liang,^a Ling Jiang,^a Jianfei Che,*b Guangyu

He a, Haiqun Chen *a

^a Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu 213164, China.

^b School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.

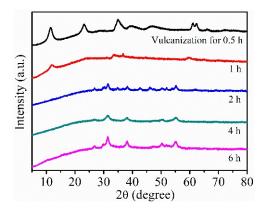


Fig. S1. XRD patterns of intermediate products obtained in the formation of pompom-like CoNi₂S₄

from Co₃Ni₆(OH)₁₈(CO₃)_{1.3} precursor.

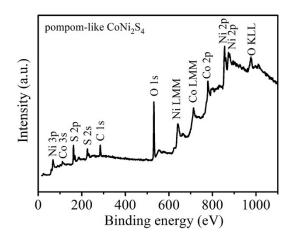


Fig. S2. XPS survey spectrum of pompom-like CoNi₂S₄.

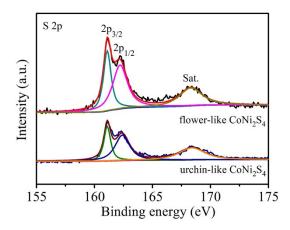


Fig. S3. Core-level XPS spectra of S 2p of flower-like and urchin-like CoNi₂S₄.

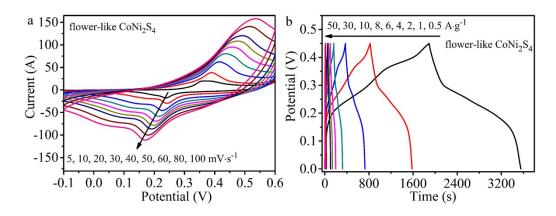


Fig. S4. CV curves at various scan rates (a) and GCD profiles at different current densities (b) of flower-like $CoNi_2S_4$.

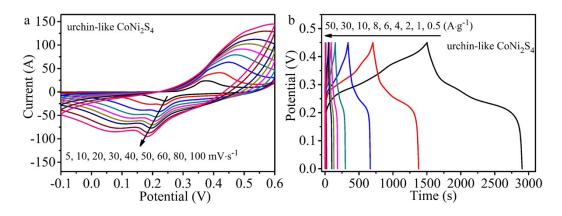


Fig. S5. CV curves at various scan rates (a) and GCD profiles at different current densities (b) of urchin-like $CoNi_2S_4$.

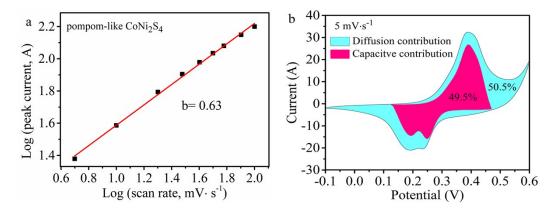


Fig. S6. Value of b determined by using the relationship between peak current and scan rate (a), contribution of diffusion-controlled process and capacitive process at 5 mV s⁻¹ (b).