Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019

A Luminescent Inorganic-Organic hybrid, $[Cd(C_{16}H_{10}N_2O_8S)(H_2O)]$, for the Selective and

Recyclable Detection of Chromates and Dichromates in Aqueous Solution

Tanaya Kundu, Krishna Manna, Ajay Kumar Jana and Srinivasan Natarajan*

Framework solids Laboratory, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore-

560012, India.

Electronic Supporting Information

Table S1. Selected bond distances and angles observed in $[Cd(H_2L)(H_2O)]$, 1.

^{*} Corresponding Author, E-mail: snatarajan@iisc.ac.in

Bond	Distances (Å)	Angle	Amplitude (°)	
Cd(1)-O(2)	2.338(3)	O(5)#1-Cd(1)-O(3)#2	97.12(12)	
Cd(1)-O(9)	2.289(3)	O(5)#1-Cd(1)-O(9)	93.35(12)	
Cd(1)-O(5)#1	2.229(3)	O(3)#2-Cd(1)-O(9)	104.12(11)	
Cd(1)-O(3)#2	2.261(3)	O(5)#1-Cd(1)-O(4)#3	162.87(11)	
Cd(1)-O(4)#3	2.327(3)	O(3)#2-Cd(1)-O(4)#3	84.49(10)	
Cd(1)- O(6)#5	2.400(3)	O(9)-Cd(1)-O(4)#3	102.83(11)	
O(3)-Cd(1)#4	2.261(3	O(5)#1-Cd(1)-O(2)	81.46(11)	
O(4)-Cd(1)#5	2.327(3)	O(3)#2-Cd(1)-O(2)	97.66(11)	
O(5)-Cd(1)#6	2.229(3)	O(9)-Cd(1)-O(2)	158.09(10)	
O(6)-Cd(1)#5	2.400(3)	O(4)#3-Cd(1)-O(2)	81.42(11)	
		O(5)#1-Cd(1)-O(6)#3	105.92(11)	
		(3)#2-Cd(1)-O(6)#3	154.49(10)	
		O(9)-Cd(1)-O(6)#3	85.58(10)	
		O(4)#3-Cd(1)-O(6)#3	70.27(10)	
		O(2)-Cd(1)-O(6)#3	75.55(10)	

Symmetry transformations used to generate equivalent atoms: #1: -x+3/2,-y+1,z-1/2; #2: x-1,y,z; #3: x-1/2,-y+1/2,-z+1; #4: x+1,y,z; #5: x+1/2,-y+1/2,-z+1; #6: -x+3/2,-y+1,z+1/2.

 Table S2. Hydrogen bonding interactions found in the crystal structure of 1.

Interactions	D…A (Å)	H…A (Å)	D–H···A (deg)	Symmetry Code
O(9)–H(9B)…O(1)	2.734(5)	1.85(3)	173(3)	1-x,-1/2+y,1/2-z
O(9)–H(9A)···O(6)	3.035(4)	2.16(3)	166(2)	3/2+x,3/2-y,-z
N(2)-H(2)···O(9)	3.190(5)	2.53(3)	146(3)	3/2-x,2-y,-1/2+z

Fig. S1. PXRD patterns of compound 1, simulated, as synthesized and after sensing of $Cr_2O_7^{2-}$ and CrO_4^{2-} in aqueous solutions.

Fig. S2. IR spectra of the compound 1

Fig. S3. TGA of compound 1

Fig. S4. Powder XRD pattern of the final product of compound **1** after TGA analysis. The numbers denote the d spacing of the peaks.

Fig. S5. The solid state UV□Vis absorption spectra of compound 1 and free ligand H4L.

Fig. S6. Room temperature solid–state photoluminescence spectra of compound 1 and free ligand H₄L, $\lambda_{ex} = 320$ nm.

Fig. S7. The assymetric unit of compound 1.

Fig. S8. Coordination environment of Cd^{2+} ion in compound 1.

Fig. S9. Different connectivity of the two oxamato groups of H_2L^{2-} with Cd^{2+} ions in 1.

Fig. S10. Hydrogen bonding interactions between the coordinated water, N–H group and oxygen atoms of oxamato groups of the ligand in compound **1**.

Fig. S11. The luminescence intensity of compound 1 in presence of different anions.

Fig. S12. Comparison of the luminescence quenching effect of (a) $Cr_2O_7^{2-}$ and (b) CrO_4^{2-} on compound 1 is presence of other competitive anions (10 x 10^{-4} M).

Fig. S13. Linear region of luminescence intensity of compound 1 upon addition of (a) $Cr_2O_7^{2-}$ and (b) CrO_4^{2-} solutions at λ_{em} =426 nm (λ_{ex} = 320 nm).

Detection Limit Calculation:

The luminescence intensity of the compound was plotted as a function of anion concentration. The limit

of detection (LOD) is given by: $LOD = 3\sigma/m$, where σ is the standard deviation of the blank measurements without adding the anion and m is the slope of the linear plot.

Blank readings of 1	Luminescence
(without analyte)	intensity
Reading 1	782.7
Reading 2	780.5
Reading 3	783.8
Reading 4	784.2
Reading 5	781.3
Standard Deviation (σ)	1.58

Table	S3 .	Standard	deviation	and	detection	limit	calculation	for	$Cr_2O_7^{2-}$
-------	-------------	----------	-----------	-----	-----------	-------	-------------	-----	----------------

Slope from the graph (m)	3088 mM ⁻¹
Detection limit (3o/m)	0.00153 mM
Limit of detection (LOD)	0.45 ppm

Table S4. Standard deviation and detection limit calculation for CrO_4^{2-}

Blank readings of 1	Luminescence
(without analyte)	intensity
Reading 1	760.5
Reading 2	761.6
Reading 3	763.4
Reading 4	762.3
Reading 5	759.2
Standard Deviation (σ)	1.62

Slope from the graph (m)	1336.5 mM ⁻¹
Detection limit (3 σ /m)	0.00364 mM
Limit of detection (LOD)	0.70 ppm

Fig. S14. Recyclability of compound 1 – as a sensor with $Cr_2O_7^{2-}$ (a) and CrO_4^{2-} (b). The intensity is measured at 426 nm ($\lambda_{ex} = 320$ nm) for 1 and in presence of 10 x 10⁻⁴ M anion solutions.

Fig. S15. Stern-Volmer plots for 1 at high concentration of (a) $Cr_2O_7^{2-}$ and (b) CrO_4^{2-} .

Fig. S16. Overlap between the absorption bands of $Cr_2O_7^{2-}$ and CrO_4^{2-} with the absorption spectra of compound 1.

Fig. S17. The proposed mechanism of Knoevenagel condensation reaction.

Fig. S18. (a) The pxrd patterns after the several cycles of Knoevenagel condensation reaction employing compound1 as a catalyst. (b) The yield for recyclability test up to 4th cycles using compound 1 as a catalyst.

2-Benzylidenemalononitrile

Fig. S19. ¹H NMR (400 MHz, CDCl₃): *δ* = 7.57 (t, 2H, *J* = 8.0 Hz, 8.0 Hz), 7.66 (t, 1H, *J* = 8.0 Hz, 8.0 Hz), 7.81 (s, 1H), 7.93 (d, 2H, *J* = 8.0 Hz)

2-(2-Nitrobenzylidene)malononitrile

Fig. S20. ¹H NMR (400 MHz, CDCl₃): *δ* = 7.84 (m, 2H), 7.91 (t, 1H, *J* = 8.0 Hz, 8.0 Hz), 8.37 (d, 1H, *J* = 8.0 Hz), 8.47 (s, 1H).

3-(2,2-Dicyanovinyl)benzonitrile

Fig. S21. ¹H NMR (400 MHz, CDCl₃): *δ* = 7.71 (t, 1H, *J* = 8.0 Hz, 8.0 Hz), 7.80 (s, 1H), 7.90 (d, 1H, *J* = 8.0 Hz), 8.08 (s, 1H), 8.20 (d, 1H, *J* = 8.0 Hz).

2-(4-Nitrobenzylidene)malononitrile

Fig. S22. ¹H NMR (400 MHz, CDCl₃): δ = 7.91 (s, 1H), 8.10 (d, 2H, *J* = 8.0 Hz), 8.41 (d, 2H, *J* = 8.0 Hz).

2-(4-Chlorobenzylidene)malononitrile

Fig. S23. ¹H NMR (400 MHz, CDCl₃): δ = 7.55 (d, 2H, J = 8.0 Hz), 7.76 (s, 1H), 7.88 (d, 2H, J = 8.0 Hz).

Fig. S24. ¹H NMR (400 MHz, CDCl₃): δ = 7.71 (d, 2H, *J* = 8.0 Hz), 7.75 (s, 1H), 7.80 (d, 2H, *J* = 8.0 Hz).