Synthesis, structure and phenoxazinone synthase-like activity of three unprecedented alternating Co^{II}–Co^{III} 1D chains

Sayantan Ganguly,^{a,b} Paramita Kar,^{a,c} Maharudra Chakraborty,^a Koushik Sarkar,^d Ashutosh Ghosh^a*

^aDepartment of Chemistry, University College of Science, University of Calcutta, 92, A. P. C. Road, Kolkata-700 009, India; e-mail: <u>ghosh_59@yahoo.com</u>

^bDepartment of Chemistry, Taki Government College, Taki, Hasnabad, West Bengal 743429, India

^cDepartment of Chemistry, Bagnan College, Bagnan, Howrah, West Bengal 711303, India

^dSchool of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India

Fig. S1 Representative IR spectrum of complex 1.

Fig. S2 Representative IR spectrum of complex 2.

Fig. S3 Representative IR spectrum of complex 3.

g. S4 Representative UV-Vis spectra of the complexes (1–3) in Methanol solution (left) d-d transition and (right) charge transfer band.

Complex	d-d band	CT band
	$(\lambda_{max}(nm) (\epsilon, M^{-1}cm^{-1}))$ in	$(\lambda_{max}(nm) (\epsilon, M^{-1}cm^{-1}))$ in
	CH ₃ OH)	CH ₃ OH)
1	670 (152)	380(4000),246(65000),221(55000)
2	669 (136)	378(3226),241(47519),214(56960)
3	668 (114)	379(2419),267(67280),227(80386)

Table S1. Representation of the d-d band and CT band in the complexes (1–3)

Fig. S5 (a) Helical polymeric structure along crystallographic b axis (Hydrogen atoms, anion and water molecule are omitted for clarity; (b) Formation of 2D supramolecular network by intermolecular hydrogen bonding interactions in complex 2.

Table S2. Geometric features (Distances in (Å) and Angles in (⁰)) of the H-bond interaction	ns
obtained for complex 1	

Donor–H·····Acceptor	<mark>D-H (Å)</mark>	<mark>H⋯⋯A (Å)</mark>	D·····A(Å)	<mark>∠D–H·····A</mark> (⁰)	Symmetry
C(7)–H(7)·····O(10A)	<mark>0.93</mark>	<mark>2.17</mark>	<mark>3.10(4)</mark>	173	-1+x,y,z

C(17)–H(17)·····O(9A)	<mark>0.93</mark>	<mark>2.54</mark>	<mark>3.32(4)</mark>	<mark>141</mark>	x, y, z
C(18)–H(18)·····O(8A)	<mark>0.98</mark>	<mark>2.53</mark>	<mark>3.41(3)</mark>	<mark>149</mark>	x, y, z
C(39)–H(39)·····O(8A)	<mark>0.93</mark>	<mark>2.54</mark>	<mark>3.37(5)</mark>	<mark>147</mark>	x, y, z
C(34)–H(34)·····O(7A)	<mark>0.93</mark>	<mark>2.43</mark>	<mark>3.31(3)</mark>	158	2-x, -1/2+y, 2-z

Table S3. Geometric features (Distances in (Å) and Angles in (⁰)) of the H-bond interactionsobtained for complex 2

Donor–H·····Acceptor	<mark>D-H (Å)</mark>	<mark>H·····A (Å)</mark>	<mark>D·····A(Å)</mark>	<mark>∠D–H·····A</mark> (⁰)	<mark>Symmetry</mark>
C(7)–H(7)·····O(10)	<mark>0.95</mark>	<mark>2.41</mark>	3.28(19)	153	<mark>1+x, y, z</mark>
C(17)–H(17)·····O(9)	<mark>0.95</mark>	<mark>2.49</mark>	<mark>3.31(17)</mark>	<mark>144</mark>	x, y, z
C(18) –H(18)·····O(9)	<mark>1.00</mark>	<mark>2.54</mark>	<mark>3.26(19)</mark>	<mark>129</mark>	x, y, z
C(30)–H(30)·····O(8)	<mark>0.95</mark>	<mark>2.50</mark>	3.23(16)	<mark>134</mark>	1-x, -1/2+y, -z

Table S4. Geometric features (Distances in (Å) and Angles in (⁰)) of the H-bond interactionsobtained for complex 3

Donor-H·····Acceptor	D-H(Å)	HA(Å)	D ·····A (Å)	∠D–H·····A	Symmetry
				(0)	
$C(19)-H(19A)\cdots O(1)$	0.97	2.56	3.258(13)	128	-1/2+x, 3/2-y, 2-z
C(9)–H(9A)·····O(8)	0.97	2.58	3.271(13)	128	1/2+x, 3/2-y, 2-z

Table S5. Geometric features (Distances in (A⁰) and Angles in (⁰)) of the C-H $/\pi$ interactionsobtained for complex 3

C-H·····Cg(Ring)	НСд	∠C–H·····Cg	С·····Cg	Symmetry
	(Å)	(⁰)	(Å)	
C(29)–H(29)·····Cg(1)	2.85	133	3.551(15)	-1/2+X,3/2-Y,-Z

Fig. S6 Increase in absorbance around 430 nm, after mixing equal volumes of methanolic solutions of *o*-aminophenol (1.0×10^{-2} M) and 1 (1.0×10^{-4} M). The spectra were recorded in every 5 min interval.

Fig. S7 Increase in absorbance around 430 nm, after mixing equal volumes of methanolic solutions of *o*-aminophenol (1.0×10^{-2} M) and 3 (1.0×10^{-4} M). The spectra were recorded in every 5 min interval.

Fig. S8 Representative UV-Vis spectra of *o*-aminophenol (Blank).

Table S6. Different concentrations of substrate (o-aminophenol) in methanol for kinetic

measurement

Metal complex and its	Concentration of <i>o</i> -aminophenol (M)
concentration (M)	
1(5.0× 10 ⁻⁵)	5.0×10^{-4} , 1.5×10^{-3} , 2.5×10^{-3} , 3.5×10^{-3} , 5.0×10^{-3} , 7.5×10^{-3} ,
	$1.0 \times 10^{-2}, 1.3 \times 10^{-2}, 1.5 \times 10^{-2}$
$2(5.0 \times 10^{-5})$	5.0×10^{-4} , 1.5×10^{-3} , 2.5×10^{-3} , 3.5×10^{-3} , 5.0×10^{-3} , 7.5×10^{-3} ,
	$1.0 \times 10^{-2}, 1.3 \times 10^{-2}, 1.5 \times 10^{-2}, 2.0 \times 10^{-2}, 2.5 \times 10^{-2}, 3.0 \times 10^{-2}$
3 (5.0× 10 ⁻⁵)	5.0×10^{-4} , 1.5×10^{-3} , 2.5×10^{-3} , 3.5×10^{-3} , 5.0×10^{-3} , 7.5×10^{-3} ,
	$1.0 \times 10^{-2}, 1.3 \times 10^{-2}$

Fig. S9 Plot of initial rates *vs* substrate concentration for the oxidation reaction of *o*-amino phenol catalyzed by complex **1**. Inset shows the Lineweaver–Burk plot. Symbols and solid lines represent the experimental and simulated profiles, respectively.

Fig. S10 Plot of initial rates *vs* substrate concentration for the oxidation reaction of *o*-amino phenol catalyzed by complex **3.** Inset shows the Lineweaver–Burk plot. Symbols and solid lines represent the experimental and simulated profiles, respectively.

Complex	V _{max} (M S ⁻¹)	Std. Error	K _M (M)	Std. Error	$k_{\rm cat}$ (h ⁻¹)
1	1.59 x 10 ⁻⁸	2.21 x 10 ⁻⁹	2.66 x 10 ⁻³	1.88 x 10 ⁻⁴	1.2
2	1.60 x 10 ⁻⁷	2.76 x 10 ⁻⁸	1.81 x 10 ⁻²	2.73 x 10 ⁻⁴	11.5
3	3.69 x 10 ⁻⁸	1.69 x 10 ⁻⁸	3.74 x 10 ⁻³	5.97 x 10 ⁻⁴	2.7

 Table S7.
 Kinetic parameters for phenoxazinone synthase activity of complexes (1–3)

Fig. S11 Representative UV-Vis spectra of the complex $\{[Co^{II}(bpy)_3] \cdot (ClO_4)_2 \cdot H_2O\}$ with *o*-amino phenol.

Fig. S12 Representative UV-Vis spectra of the complex $\{[Co^{II}(phen)_3] \cdot (ClO_4)_2 \cdot H_2O\}$ with *o*-amino phenol.

Fig. S13 Representative ESI mass spectrum of complex 1.

Fig. S14 Representative ESI mass spectrum of complex 2.

Fig. S15 Representative ESI mass spectrum of complex 3.

Fig. S16 Representative ESI mass spectrum of $\{[Co^{II}(bpy)_3] \cdot (ClO_4)_2 \cdot H_2O\}$.

Fig. S17 Representative ESI mass spectrum of $\{[Co^{II}(phen)_3] \cdot (ClO_4)_2 \cdot H_2O\}$.

Fig. S18 Representative ESI mass spectrum of complex 2 with *o*-amino phenol.

Fig. S19 Representative ESI mass spectrum of complex 2 with *o*-amino phenol (Expanded).

Fig. S20 Representative ESI mass spectrum of complex 2 with *o*-amino phenol (Expanded).

Fig. S21 Representative ESI mass spectrum of complex 2 with o-amino phenol (Expanded).

Fig. S22 Representative ESI mass spectrum of complex 2 with *o*-amino phenol (Expanded).

CARI Hester -

	Complexes	<i>k</i> _{cat} (h ⁻¹)	$k_{\rm cat}$ (h ⁻¹)	k_{cat} (h ⁻¹) in	References
		in	in CH ₃ CN	DMF	
		СН ₃ ОН			
Соп	[Co ^{II} (Hdmg)L ¹]	Not	Not	Not	14a
complexes		Performed	Performed	Performed	
	[Co ^{II} (L ²)Cl(H ₂ O)]Cl.H ₂ O	13.7	Not	Not	25a
			Performed	Performed	
	$[Co^{II}(L^2)(NCS)_2]$	7.4	Not	Not	25a
			Performed	Performed	
	$[Co^{II}(L^3)Cl_2]$	4.1	Not	Not	25a
			Performed	Performed	
	$[Co^{II}(L^4)(CH_3CN)](ClO_4)_2$	3.4	Not	Not	14b
			Performed	Performed	
	[Co ^{II} (L ⁵)(H ₂ O)](ClO ₄) ₂	6.4	Not	Not	14b
			Performed	Performed	
	$[Co^{II}(L^6)(H_2O)](ClO_4)_2$	8.3	Not	Not	14b
			Performed	Performed	
	$[Co^{II}_4 L^7_2(\mu_{1,1,1}\text{-}N_3)_2(N_3)_2]$	500.4	Not	Not	2d
			Performed	Performed	
	$[Co^{II}_4 L^7_2(\mu_3 -$	508.9	Not	Not	2d
	OH) ₂ (NCS) ₂]·4CH ₃ CN		Performed	Performed	
	$[Co^{II}_4 L^7_2(\mu_3 -$	511.2	Not	Not	2d
	OH) ₂ (NCSe) ₂]·2CH ₃ CN		Performed	Performed	
CoIII	[Co ^{III} (L ⁸) ₃]	Not	Not	Not	25b
complexes		Performed	Performed	Performed	
	$[Co^{III}_{2}(L^{9})_{2}(\mu - L^{10})_{2}Cl_{2}] Cl_{2} \cdot 2H_{2}O$	13.8	Not	Not	25c
			Performed	Performed	

Table S8. k_{cat} Values for the oxidation of OAPH to 2-aminophenoxazine-3-one catalyzed bycomplex 1, 2 and 3 and other reported cobalt complexes.^a

$[Co^{III}(L^{11})(N_3)_3]$	20.4	Not	Not	14c
		Performed	Performed	
$[Co^{III}(L^{12})(N_3)_3]$	33.3	Not Performed	Not Performed	14c
[Co ^{III} ₂ (L ¹³) ₂ (μ- O ₂)](ClO ₄) ₄ ·2CH ₃ CN	30.1	Not Performed	Not Performed	14b
$[Co^{III}_2(L^{14})_2(\mu - O_2)](ClO_4)_4$	23.4	Not Performed	Not Performed	14b
$[L^{15}Co^{III}(L^{16})_2]CIO_4 \cdot CH_3OH \cdot H_2O$	11.5	Not Performed	Not Performed	25d
$[L^{15}Co^{III}(L^{17})_2Na(ClO_4)_2] \cdot 0.5H_2O$	27.9	Not Performed	Not Performed	25d
[Co ^{III} (L ¹⁸)(N ₃) ₂].0.5CH ₃ CN	54.0	Not Performed	Not Performed	14d
$[Co^{III}(L^{18})(NCS)_2].0.5H_2O$	48.6	Not Performed	Not Performed	14d
[Co ^{III} (L ¹⁹) ₂ (py) ₂]Cl·8H ₂ O	30.6	Not Performed	Not Performed	25e
[L ²⁰ Co ^{III} (L ²¹)(H ₂ O)]ClO ₄ ·CH ₃ OH	45.1	Not Performed	Not Performed	25f
$[L^{20}Co^{III}(L^1)(H_2O)]PF_6$	54.0	Not Performed	Not Performed	25f
[Co ^{III} (HL ²²) ₂]OCOCH ₃ ·H ₂ O	28300	Not Performed	Not Performed	25g
$[\mathrm{Co}^{\mathrm{III}}(\mathrm{HL}^{23})_2](\mathrm{ClO}_4)_3 \cdot 2\mathrm{H}_2\mathrm{O}$	4.4	Not Performed	Not Performed	14e
$[Co^{III}(L^{23})(N_3)_2]$	56.0	Not Performed	Not Performed	14e
$[\mathrm{Co}^{\mathrm{III}}(\mathrm{L}^{23}) (\mathrm{NCS})_2]$	53.8	Not Performed	Not Performed	14e

	$[Co^{III}(L^{24})(N_3)(L^{25})]$	29952	Not	Not	25h
			Performed	Performed	
			14022		•
	[Com(L20)(bzan)(N3)]	Not	14832	Not	26a
		Performed		Performed	
	$[Co^{III}(L^{26})(bzan)(NCS)]$	Not	15444	Not	26a
		Performed		Performed	
	$[Co^{III}(L^{27})(L^{28})(N_3)] \cdot H_2O$	Not	122.8	Not	26b
		Performed		Performed	
	$[Co^{III}(L^{29})(L^{30})(NCS)]$	Not	466.7	Not	26b
		Performed		Performed	
	$[Co^{III}(L^{31})(acna)(N_3)]$	Not	77.5	Not	26c
		Performed		Performed	
	$[Co^{III}(L^{32})(bzan)(N_3)]$	Not	77.1	Not	26c
		Performed		Performed	
	[Co ^{III} L ³³ 2]Cl	9720.0	Not	Not	26d
			Performed	Performed	
	[Co ^{III} (HL ³⁴)2](ClO4)3·2H2O	3.8	Not	Not	14f
			Performed	Performed	
	[Co ^{III} (L ³⁴)(N3)2]	51.8	Not	Not	14f
			Performed	Performed	
	[Co ^{III} (L ³⁴)(NCS)2]	48.4	Not	Not	14f
			Performed	Performed	
	$[Co^{III}(L^{35})(N_3)_2]$	47.4	Not	Not	14g
			Performed	Performed	
	[Co ^{III} (L ³⁵)(NCS) ₂]	47.6	Not	Not	14g
			Performed	Performed	
Mixed	$[(Co^{III})_2(Co^{II})L^{36}_2(\mu_2 -$	Not	153.6	Not	14h
valence	PhCO ₂ ⁻) ₂ (PhCO ₂ ⁻) ₂]	Performed		Performed	
complexes	[Co ^{III} (HL ¹⁸) ₂][Co ^{II} (NCS) ₄].NCS	26.1	Not	Not	14d
•			Performed	Performed	

	$[Co^{III}(L^{18})_2]_2[Co^{II}(NCO)_4]$	8.3	Not	Not	14d
			Performed	Performed	
	$[Co^{III}(HI^{23})($	20.7	Not	Not	14e
	L^{23}][Co ^{II} (NCS) ₄].5CH ₃ OH		Performed	Performed	
	$[Co^{III}(L^{23})_2]_2[Co^{II}(NCO)_4]$	30.0	Not	Not	14e
			Performed	Performed	
	[Co ^{III} (L ³⁴)(Br-sal)] ₂ [Co ^{II} (NCS) ₄]	11.8	Not	Not	14f
			Performed	Performed	
	$[\mathrm{Co}^{\mathrm{III}}(\mathrm{L}^{35})(\mathrm{sal})]_2[\mathrm{Co}^{\mathrm{II}}(\mathrm{NCS})_4]$	16.5	Not	Not	14g
			Performed	Performed	
	$[Co^{III}(L^{35})_2]_2[Co^{II}_{0.5}(NCS)_2][$	10.3	Not	Not	14g
	Co ^{II} _{0.25} (NCS)]Cl _{0.5}		Performed	Performed	
Mixed	Complex 1	1.2	Not	Not	Present
valence			Performed	Performed	Study
coordinati	Complex 2	11.5	Not	Not	Present
on polymer			Performed	Performed	Study
	Complex 3	2.7	Not	Not	Present
			Performed	Performed	Study

^a Where L^1 = triphenyl phosphine, $L^2 = N,N'$ -bis(pyridin-2-ylmethylene)-2,2-dimethylpropane-1,3-diamine, $L^3 = N_1N'$ -bis(6 methylpyridin-2-ylmethylene)-2,2-dimethylpropane-1,3-diamine, L⁴ = N1-(2-(methoxy(6-methylpyridin-2-yl)methylamino)propyl)-N3-((6-methylpyridin-2yl)methylene)propane-1,3-diamine, $L^5 = N^1-(3-((6-methylpyridin-2-yl)methyleneamino)propyl) N^{3}$ -((6-methylpyridin-2-yl)methylene)propane-1,3-diamine, $L^{6} = N^{1}$ -(3-((6-methylpyridin-2yl)methyleneamino)propyl)-N1-methyl-N3-((6-methylpyridin-2-yl)methylene)propane-1,3diamine, H_2L^7 = N,N'-dimethyl-N,N'-bis(2-hydroxy-3-methoxy-5methylbenzyl)ethylenediamine, $L^8 = 4,4'$ -dimethyl-2,2'-bipyridine, $L^9 = 2$ -aminomethylpyridine, $L^{10} = 2$ -iminomethylpyridine anion, $L^{11} = Bis-(2-pyridylmethyl)amine, <math>L^{12} = (2-pyridylmethyl)amine$ pyridylmethyl)(2-pyridylethyl)amine, $L^{13} = N^{1}-(3-((pyridin-2-yl)methyleneamino)propyl)-N^{3} L^{14}$ -(3-(1-(pyridin-2- N^1 ((pyridin-2-yl)methylene)propane-1,3-diamine, =

vl)ethylideneamino)propyl)-N³-(1-(pyridin-2-yl)ethylidene)propane-1,3-diamine, $H_2L^{15} = N_1N'$ bis(3-methoxysalicylidehydene)cyclohexane-1.2-diamine). L¹⁶=4-aminopyridine. L¹⁷=1methylimidazole, $HL^{18} = 2-((E)-(3-(3-(dimethylamino)propylamino)propylimino)methyl)-6-$ 3,5,6-tribromo-4-pyridiniumcatechol, methoxyphenol, H_2L^{19} = $H_{2}L^{20}=$ N,N'-bis(3-methoxysalicylidehydene)cyclohexane-1,2-diamine, $L^{21} = tri(m-tolyl)phosphine,$ $H_{2}L^{22}$ = N-(2-hydroxyethyl)-3-methoxysalicylaldimine, HL^{23} = 2-((E)-(3-(3-(dimethylamino)propylamino)propylimino)methyl)-6-ethoxyphenol. HL^{24} 1-((2-= (diethylamino)ethylimino)methyl)naphthalene-2-ol, HL^{25} = acetylacetone, HL^{26} = 2-(3-(dimethylamino)propyliminomethyl)-6-ethoxyphenol, Hbzan = 1-benzoylacetone, $HL^{27} = 2-((2-$ (piperidin-1-yl)ethylimino)methyl)-6-ethoxyphenol, $HL^{28}=1$ -acetyl-2-naphthol, $HL^{29} = 2-((3-1))^{-1}$ (dimethylamino)propylimino)methyl)-6-methoxyphenol, $HL^{30} = 2,4$ -pentanedione, $HL^{31} =$ 2((2(2-hydroxyethylamino))) ethylimino) methyl)-6-ethoxyphenol, Hacna = 2-acetyl-1-naphthol, HL^{32} 1((2(diethylamino)ethylimino)methyl)naphthalen-2-ol, HL³³ = = 2 - (3 aminopropylthio)ethanol, HL^{34} = 2-((E)-(3-(3-(dimethylamino)propylamino)propylimino)methyl)-4-bromophenol, HL³⁵ = 2-((E)-(3-(3-(dimethylamino)propylamino)methyl)phenol, $H_2L^{36} = N_1N'-bis(2-hydroxybenzyl)-$ 1,3-propanediamine.

Fig. S23 Plot of $\chi_{\rm M}T$ vs. T for **2**. The circles are the experimental data and the solid line (blue) is generated from the fitted curve.

Fig. S24 Plot of $\chi_{M}T$ vs. T for **3**. The circles are the experimental data and the solid line (blue) is generated from the fitted curve.